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a b s t r a c t

The Newton diagram and the lowest-degree quasi-homogeneous terms of an analytic
planar vector field allow us to determine whether an isolated singular point of the vector
field is monodromic or has a characteristic trajectory.
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1. Introduction

Weare interested in the behavior of the trajectories in a neighborhoodof a singular point of the planar analytic differential
system

ẋ = F(x), (1)

and, in particular, in determining when a singular point (we can assume the origin to be the singular point) is surrounded
by orbits of the system (monodromic singular point).

Each trajectory by lying on a vicinity of a monodromic singular point is either a spiral or an oval. Moreover, from the
finiteness theorem for the number of limit cycles, a monodromic point of an analytic planar vector field can be only either
a focus or a center, see Il’yashenko [1]. So, the monodromy problem is a prior step to solving the center problem of a vector
field which is one of the classical open problems in the qualitative theory of planar differential systems.

If the differential matrix DF(0) is not identically null, the monodromy problem is completely solved. The problem when
the eigenvalues of the matrix are conjugated complex, was solved by Poincaré [2] and when the matrix is nilpotent, by
Andreev [3]. Finally, if DF(0) is identically null (in such a case, O is a degenerate singular point), the monodromy problem
can be solved by using the blow-up technique (developed by Dumortier [4]) which consists of performing a series of changes
to desingularize the point. However, its application for determining the monodromy of a singular point of a family of vector
fields with parameters becomes rather complicated. Some works that use this technique in order to study the monodromy
are [5–8]. All of them are only partial results.

In order to show our results, we need to recall the following concepts that we will use throughout the paper: the quasi-
homogeneous vector fields (in particular, the conservative–dissipative splitting of a quasi-homogeneous vector field), the
Newton diagram of a vector field and the generalized polar coordinates, introduced by Liapunov [9].

Conservative–dissipative splitting

Let t = (t1, t2) be non-null with t1 and t2 non-negative integer numbers without common factors. A function f of two
variables is quasi-homogeneous of type t and degree k if f (εt1x, εt2y) = εkf (x, y). The vector space of quasi-homogeneous
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polynomials of type t and degree k will be denoted by Pt
k. A vector field F = (F1, F2)T is quasi-homogeneous of type t and

degree k if F1 ∈ Pt
k+t1

and F2 ∈ Pt
k+t2

. We will denote Qt
k the vector space of the quasi-homogeneous polynomial vector

fields of type t and degree k.
The quasi-homogeneous vectormonomials can be determined by drawing the latticeZ2

+
, and assigning each point (m, n)

to the quasi-homogeneous vector fields (xmyn−1, 0)T and (0, xm−1yn)T . The points with integer coordinates aligned in the
straight lines perpendicular to t, (m− 1)t1 + (n− 1)t2 = k, determine the quasi-homogeneous vector monomials with the
same degree k.

Any vector field can be expanded into quasi-homogeneous terms of type t of successive degrees. Thus, the system (1)
can be written in the form

ẋ = F(x) = Fr(x) + Fr+1(x) + · · · =

∞−
j=0

Fr+j(x),

for some r ∈ Z, where Fj = (Pj+t1 ,Qj+t2)
T

∈ Qt
j and Fr ≢ 0. These expansions are usually considered in the analysis of

the topological determination of the singularity by means of the blow-up technique (see [10,11,4]). This concept also has
been used by Algaba et al. [12] as an application of the Normal Form Theory, and for the study of the integrability and of the
center problem of systems with a singular point degenerated, i.e. systems whose matrix of the linear part evaluated in the
singular point is identically null, see [13,14].

Next, we cite the splitting of a quasi-homogeneous vector field as a sum of two quasi-homogeneous vector fields, a
conservative one (having zero-divergence) and a dissipative one (in the sense of the non-conservative part that fully captures
the divergence of the vector field) that will be useful in what follows and will play a main role in our analysis. Throughout
this paper, the Hamiltonian system associated to the C1 function f is denoted by Xf , i.e. Xf = (−

∂ f
∂y ,

∂ f
∂x )

T . Algaba et al. [14]
proved that any quasi-homogeneous vector field Fj = (Pj+t1 ,Qj+t2)

T
∈ Qt

j can be expressed as

Fj = Xhj+|t| + µjD0, (2)

where D0(x, y) := (t1x, t2y)T (a dissipative quasi-homogeneous vector field of type t and degree 0), µj :=
1

j+|t|div(Fj) ∈ Pt
j

(the divergence of Fj), hj+|t| :=
1

j+|t| (t1xQj+t2 − t2yPj+t1) ∈ Pt
j+|t| (the wedge product of D0 and Fj) and |t| = t1 + t2.

Wenote that any non-vanishing quasi-homogeneous polynomial of type t = (t1, t2)with t1 and t2 non-null, in particular
hj+|t|, can be expressed as p(x, y) = xk1yk2p0(xt2 , yt1) with 0 ≤ k1 < t2, 0 ≤ k2 < t1 being p0 a homogeneous
polynomial. So, by abusing the notation, we can write any quasi-homogeneous polynomial of type t in a compact form
p(x, y) = c

∏m
j=0 f

mj
j

∏n
j=0 g

nj
j , where

fj(x, y) = x, y or yt1 − λjxt2 , j = 0, . . . ,m

and

gj(x, y) = (yt1 − ajxt2)2 + b2j x
2t2 , j = 0, . . . , n

with c, λj, aj and bj real numbers and λj, bj non-zero, for all j.
If hr+|t| ∈ Pt

r+|t| and µr ∈ Pt
r are the polynomials associated to the lowest-degree quasi-homogeneous term of type t of F,

we will say that a polynomial of the form x, y or yt1 − λxt2 , λ ≠ 0, is a strong factor of F associated to the type t, or simply
a strong factor of hr+|t|, if it satisfies one of the following properties:

(i) it is a factor of hr+|t| of odd multiplicity order,
(ii) it is a factor of hr+|t| of even multiplicity order (2m) and, either it is not a factor of µr with µr ≢ 0 or is a factor of µr

with even multiplicity order (2n) with 0 < n < m.

Newton diagram

We will write the components of the vector field F in the form P(x, y) =
∑

aijxiyj−1 and Q (x, y) =
∑

bijxi−1yj.
The support of (1) and also of F, denoted by supp(F), is the set of pairs (i, j) with (aij, bij) ≠ (0, 0). The vector (aij, bij) is
called the vector coefficient of (i, j) in the support. Consider the set

(i,j)∈supp(F)


(i, j) + R2

+


,

where R2
+
is the positive quadrant and the union is taken over all points (i, j) in the support. The boundary of the convex

hull of this set is made up of two open rays and a polygon, which can be just one point. The polygon together with the rays
that do not lie on a coordinate axis, if they existed, is called the Newton diagram of the vector field F. The component parts
of the Newton diagram are called edges and their endpoints are the vertices of the Newton diagram.
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