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Apple crop-load estimation with over-the-row machine vision system
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a b s t r a c t

Accurate crop-load estimation is important for efficient management of pre- and post-harvest operations.
This information is crucial for the planning of labor and equipment requirement for harvesting and trans-
porting fruit from the orchard to packing house. Current machine vision-based techniques for crop-load
estimation have achieved only limited success mostly due to: (i) occlusion of apples by branches, leaves
and/or other apples, and (ii) variable outdoor lighting conditions. In order to minimize the effect of these
factors, a new sensor system was developed with an over-the-row platform integrated with a tunnel
structure which acquired images from opposite sides of apple trees. The tunnel structure minimized illu-
mination of apples with direct sunlight and reduced the variability in lighting condition. Images captured
in a tall spindle orchard were processed for identifying apples, which achieved an identification accuracy
of 79.8%. The location of apples in three-dimensional (3D) space was used to eliminate duplicate counting
of apples that were visible to cameras from both sides of the tree canopy. The error on identifying dupli-
cate apples was found to be 21.1%. Overall, the method achieved an accuracy of 82% on estimating crop-
load on trees with dual side imaging compared to 58% with single side imaging. Over-the-row machine
vision system showed promise for accurate and reliable apple crop-load estimation in the apple orchards.

� 2015 Published by Elsevier B.V.

1. Introduction

Crop-load estimation is essential for efficient and effective man-
agement of orchards at various stages during the production cycle.
In early summer, crop-load estimation (including counting and
location of apples) helps to optimize green fruit thinning (Volz,
1988), which is critically important to improve fruit quality and
yield. With this information, a producer can develop more sound
crop load management and harvest strategies and can maximize
their profits (Mizushima and Lu, 2011). It also helps producers to
insure their crops (Cohen et al., 2011) so that they can be compen-
sated in the event of financial loss due to weather related crop loss.
Further, crop-load estimation prior to harvest is essential for effi-
cient management of the labor force, harvest equipment, and vehi-
cles for transportation of fruit from field to the packing plant.
Packing house can also be benefited by optimizing postharvest
handling process and storage with early crop-load information
(Cohen et al., 2011).

Accurate crop-load estimation has always been a challenge for
tree fruit producers (Winter, 1986). Several forecasting models

have been developed based on ecological and/or cultivar related
parameters for yield prediction (Stajnko et al., 2004). One such
example is the ‘Prognosfruit’ crop forecasting model, which esti-
mates the number of apples per tree based on yield capacity of
tree, fruit density and average fruit mass (Winter, 1986). This
method is time consuming, as different parameters have to be
measured or estimated for individual orchards (Stajnko et al.,
2004). Researchers have also investigated the development of yield
forecasting models based on vegetation indices estimated with
hyperspectral or multispectral images captures by areal platforms
(Best et al., 2008; Ye et al.,2007). Ye et al. (2007) predict citrus yield
from hyperspectral images using vegetatition indices (e.g. NDVI, SR
and PRI) and Partial Least Square (PLS) regression model. However
the accuracy of these methods has been limited due to climate
variabilities, cultivars and geographic locations (Aravena Zamora
et al., 2010). Crop-load estimation based on direct counting of
fruits in selected trees is another approach. However, manual
countings are generally based on random sampling within trees,
which require high labor input. Manual sampling may also have
low statistical efficiency and could be biased (Aravena Zamora
et al., 2010). In order to avoid such a bias on estimation,
Wulfsohn et al. (2012) classified the tree rows based on vegetative
indices to develop multi-level systematic (manual) sampling
techniques to estimate fruit counts. But, manual sampling is time
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consuming and has chances of inaccuracy due to manual error
(Linker et al., 2012).

To address these issues, machine vision systems involving dif-
ferent types of sensors and image processing techniques have been
investigated. Aggelopoulou et al. (2011) used a color camera to
identify flowers in trees, which was then correlated to crop-load.
In such a system, fruit set, thinning and fruit drop later in the sea-
son (Winter, 1986) will complicate the estimation and affect the
accuracy of estimation. To estimate crop-load based on identifica-
tion of individual fruit, various studies have been carried out using
different types of sensors like color camera (Linker et al., 2012;
Tabb et al., 2006), thermal camera (Stajnko et al., 2004), and mul-
tispectral and hyperspectral cameras (Kim and Reid, 2004; Best
et al., 2008; Safren et al., 2007). Further, various types of image
processing techniques have been investigated to identify fruit,
which can roughly be divided into shape-based and spectral-
based analysis (Bulanon and Katoka, 2010). Bulanon et al. (2002)
used spectral analysis to identify apples and reported 88% accu-
racy. Linker et al. (2012), Stajnko et al. (2009), and Ji et al. (2012)
used shape, color and texture based analysis and reported 85%,
89%, and 89% accuracy respectively. Fruit detection accuracy in
those studies was limited by clustering and occlusions of fruits
(Stajnko et al., 2009), and variable lighting conditions in orchards
(Ji et al., 2012; Linker et al., 2012).

Most of these studies, however, evaluated the accuracy based
on the number of apples visible in an image taken from one side
of the tree canopy, which may be substantially different from the
total number of apples in a tree. To address this issue, Wang
et al. (2013) used a stereovision camera at night for multiple side
imaging and compared the results with the actual number of
apples counted by humans. This study achieved 60% accuracy in
crop-load estimation when substantial number of apples were in
clusters. Similarly, Vision Robotics Corp (San Diego, CA) reported
an accuracy of 40–60% without correction for non-visible apples
in images (Koselka, 2010). To improve the accuracy, the study cor-
related the manual apple count with the vision-based estimated
count. Zhou et al. (2012) also identified red and green apple using
color information and correlated that to the ground truth with a
correlation coefficient of 0.58–0.71. However, this process will be
labor intensive and specific to particular type of orchard. Correla-
tion coefficient may also change from year to year. Therefore, it
is valuable to develop a machine vision system that can improve
crop-load estimation accuracy to an acceptable level without
correlating estimated count and ground truth collected by human.

Fruit identification in an orchard environment through image
analysis is affected by various factors including occlusion of fruit,
variable outdoor lighting conditions, complex plant structures,
and irregularity of fruit shape and size (Cohen et al., 2011;
Karkee and Zhang, 2012). As discussed before, the two most critical
factors limiting the accuracy of crop-load estimation in apple orch-
ards are; (i) a significant number of apples are invisible to cameras
looking from only one side of apple tree canopies; and (ii) apple
identification accuracy is compromised by variable lighting condi-
tions. It was observed in the field that only 60% of apples were vis-
ible from one side of the canopy even in a modern tall spindle
apple orchard because of occlusion of apples by leaves, stems
and other apples. In addition, apples can be partially occluded or
can be in clusters of two or more fruit, both situations are challeng-
ing for image processing techniques. Varying lighting conditions,
on the other hand, causes non-uniform distribution of light inten-
sity in apples based on their exposure to sunlight at the time of
imaging, which may cause improper and incomplete image
segmentation. Thus, it would be challenging to develop a robust
algorithm to identify apples in variable lighting conditions. In this
study, our focus is to minimize the effect of variable lighting
conditions and occlusion of apples to improve apple crop-load

estimation in orchard environment. The major goal of this study
was to investigate the potential of improving crop-load estimation
with dual-side imaging compared to single-side imaging. The
specific objectives of the study were:

1. To identify and count total number of apples in the images
captured from opposite sides of tree canopies using an Over-
the-Row (OTR) sensor platform; and

2. To use 3D location information to estimate number of apples
visible from both sides and to avoid duplicate counting.

2. Materials and methods

An over-the-row (OTR) sensing platform with dimensions
2.13 m (length) � 2.74 m (width) � 3.67 m (height) was developed
and mounted on the three-point hitch of a tractor so that it could
be lifted up from one trees to another and dropped down to the
ground while taking images. A color camera (Fig. 1a) (Prosilica GigE
1290c, Allied Vision Technologies, Stadtroda, Germany) with a field
of view (FOV) of 43.6� (horizontal) by 33.4� (vertical) and image
resolution of 1280 � 960 was used to acquire RGB (color) images.
Also, a time-of-flight-of-light-based 3D camera (Fig. 1a) (PMD
CamCube 3.0, PMD Technologies, Siegen, Germany) with image
resolution of 200 � 200 and FOV of 40� (horizontal) and 40� (verti-
cal) was used to obtain 3D information of objects. Two cameras
were integrated together and mounted in the middle (lengthwise)
of the platform with sliding mechanism so that camera height
could be adjusted to capture the whole tree. To block direct sun-
light while imaging, a tunnel (Fig. 1b) was created by covering
the platform with tarpaulin (opaque curtain) on four sides and
the top of the platform. A number of LED lights (Fig. 1c) (Trilliant�

36 Light Emitting Doide Grote, Madison, Indiana) were installed in
the platform to create a controlled, uniform lighting environment
inside the tunnel. The lighting system also added capability for
nighttime data collection.

Four major steps were involved in identifying and counting
apples while avoiding duplicate counting: (i) data collection, (ii)
apple identification, (iii) co-registration of two dimensional (2D)
color images and 3D images, and (iv) identification of duplicate
apples and apple counting (Fig. 2). These steps are described in
details in the following subsections.

2.1. Data collection

Canopy images were acquired from two sides of a row in com-
mercial apple orchards using an over-the-row sensing platform.
Apple trees used in this work were of ‘Jazz’ variety (Fig. 3) trained
in the tall spindle architecture (row spacing 2.74 and inter-plant
spacing 1.17 m) (Yakima Valley Orchards, Prosser, WA). Images
were acquired between four and one week before harvest season
in 2013. During the earlier weeks of data collection, the apples
were immature and green in color. During the last week of imag-
ing, apples matured and acquired their full size and red color with
good hue and intensity. The color and 3D cameras used in this
work had relatively small field-of-view, which were not enough
to capture the whole tree canopy at once. To cover entire canopies,
images were acquired from five different camera heights (Fig. 4).
The over-the-row platform with sensing system was driven
through apple tree rows to capture images of 20 trees. A total of
212 canopy images were captured with 3D camera and another
212 images were captured by the color camera (424 images in
total). Out of 212 color images, 104 images were captured when
apples were still imagure and 108 images were captured from trees
with mature fruit. Two people counted the total number of apples
in each tree manually for the ground truth dataset. Actual number
of apples that were visible in the images captured from both sides
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