

# Contents lists available at ScienceDirect

# **BioSystems**

journal homepage: www.elsevier.com/locate/biosystems



# Disease Probability Index (DPI, $\chi$ ): A new alignment-free scoring method to evaluate the propensities of polypeptide sequences leading to disease onset



Ananya Ali, Angshuman Bagchi\*

Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India

#### ARTICLE INFO

#### Keywords: Single amino acid variants Computational biology Cross-validation Disease probability index

#### ABSTRACT

The analyses of the amino acid sequences of proteins provide valuable information regarding the structure and function of the protein. A comparatively new approach is the alignment-free sequence comparisons. To-date most, if not all, sequence analysis techniques are used to find out the sequence homologies to measure the evolutionary relatedness among the species. However, a still untouched avenue in the field of sequence analyses is to build a comparative estimate of the sequence similarities between unrelated protein sequences from and within a single species.

In this work, we tried to develop an alignment-free scoring method to study sequences from different proteins belonging to humans to identify the disease-associations of the sequences. A total of 52 protein sequences were analyzed. There were 599 reported polymorphic sites and 802 (708 polymorphic and 94 disease-associated) Single Amino acid Variants (SAVs) in the training data set. For cross-validation purposes, another set of 62 protein sequences (26 enzymes, 16 Membrane-bound Enzymes and 20 Membrane-bound Proteins), with a total of 261 reported polymorphic sites and 799 (291 polymorphic and 508 disease-associated) SAVs, were used. A negative correlation was observed for both training and cross-validation data set between percentage of reported disease-associated SAVs with a ratio of (polymorphic site: protein length). A new scoring pattern was also developed that would take into account the ratio of polymorphic site and protein length by counting the number of polymorphic amino acids and the total numbers of amino acids in proteins.

# 1. Introduction

Sequence analyses, both for proteins and nucleic acids, have become a general practice both among molecular and computational biologists due to its versatile usefulness (Karlin and Altschul, 1990; Vinga and Almeida, 2003). Sequence analyses have been found to provide valuable results to identify biologically conserved domains, biological and functional constraints on molecular evolution, phylogenetic analyses to name a few (Pearson and Lipman, 1988; Valdar, 2002). A relatively unexplored avenue of sequence analyses is the development of new scoring systems to evaluate the properties of different mutations in protein sequences (Capra and Singh, 2017; Valdar, 2002; Vinga and Almeida, 2017). Thus, it has become important to build new scoring systems for mutational analysis purposes. There are a number of alignment free sequence comparison techniques available along-with

traditional sequence alignment methods (Vinga and Almeida, 2003). Studies have shown that a vast range of theoretical background was employed for sequence comparison techniques that range from linear algebra to computation informatics and from applications of statistical methods to complex and non-linear system studies (Vinga and Almeida, 2003).

Most of these studies and methods were mainly aimed at analyzing the sequence conservation score to identify a conserved region of the sequences, by comparing homologous proteins (Capra and Singh, 2017; Karlint and Altschult, 1990; Lipman et al., 2002; Pearson and Lipmant, 1988; Valdar, 2002; Vinga and Almeida, 2017). Some studies also revealed that the amino acid sequence lengths of the proteins had good correlations with its' functions, conservational constraint and also to the evolutionary phylogeny (Lipman et al., 2002; Zhang, 2000).

Thus, in the present context, we made an attempt to find a new

E-mail address: angshumanb@gmail.com (A. Bagchi).

<sup>\*</sup> Corresponding author.

A. Ali, A. Bagchi BioSystems 172 (2018) 1–8

alignment free scoring system to analyze the disease propensity of a mutation by extracting the information from the amino acid sequences of the proteins. With the help of this newly developed scoring scheme, we could analyze the properties of the amino acid sequences from unrelated proteins from the same species. The built scoring scheme would depend only on the numerical information about the length of the protein and the number of polymorphic sites present in the sequence. The scoring scheme would be beneficial to analyze the properties of various types of mutations to categorize them as disease causing or polymorphic.

# 2. Materials and methods

# 2.1. Dataset

We used a dataset (provided in supplementary Table1), consisting of 52 amino acid sequences of different proteins from Uniprot (Leinonen et al., 2004) for our analyses. A total of 599 reported polymorphic sites and a total of 802 (708 polymorphic and 94 disease-associated) Single Amino Acid Variants (SAVs) were present in the aforementioned dataset used for the analyses. This dataset was used as the training dataset. In our analyses, we considered the following information:

Table 1
List of Data Set being used for both training and cross validation (Test data set).

| Dataset           | No       | Protiens         |            | Mutations                       |                           |                                 |                                        |
|-------------------|----------|------------------|------------|---------------------------------|---------------------------|---------------------------------|----------------------------------------|
|                   |          | Uniprot ID       | Length (N) | Number of polymorphic sites (i) | Total number of mutations | Number of Polymorphic mutations | Number of Disease causing<br>Mutations |
| TRAINING DATA SET | 1        | P01891           | 365        | 13                              | 17                        | 17                              | 0                                      |
|                   | 2        | P01892           | 365        | 21                              | 23                        | 23                              | 0                                      |
|                   | 3        | P03989           | 362        | 13                              | 16                        | 16                              | 0                                      |
|                   | 4        | P04222           | 366        | 13                              | 13                        | 13                              | 0                                      |
|                   | 5        | P13746           | 365        | 15                              | 15                        | 15                              | 0                                      |
|                   | 6        | P13747           | 358        | 4                               | 4                         | 4                               | 0                                      |
|                   | 7        | P18464           | 362        | 5                               | 5                         | 5                               | 0                                      |
|                   | 8        | P18465           | 362        | 9                               | 10                        | 10                              | 0                                      |
|                   | 9        | P30443           | 365        | 16                              | 16                        | 16                              | 0                                      |
|                   | 10       | P30460           | 362        | 21                              | 27                        | 27                              | 0                                      |
|                   | 11       | P30464           | 362        | 8                               | 9                         | 9                               | 0                                      |
|                   | 12       | P30481           | 362        | 10                              | 11                        | 11                              | 0                                      |
|                   | 13       | P30504           | 366        | 15                              | 15                        | 15                              | 0                                      |
|                   | 14       | P30685           | 362        | 13                              | 14                        | 14                              | 0                                      |
|                   | 15       | Q95460           | 341        | 3                               | 3                         | 3                               | 0                                      |
|                   | 16       | Q96PC3           | 154        | 6                               | 8                         | 6                               | 2                                      |
|                   | 17       | Q9UBH0           | 155        | 1                               | 5                         | 1                               | 4                                      |
|                   | 18       | P25445           | 335        | 14                              | 36                        | 14                              | 22                                     |
|                   | 19       | P16410           | 223        | 1                               | 2                         | 1                               | 1                                      |
|                   | 20       | P01241           | 217        | 5                               | 21                        | 5                               | 16                                     |
|                   | 21       | P01589           | 272        | 1                               | 3                         | 1                               | 2                                      |
|                   | 22       | Q9NZK5           | 511        | 1                               | 11                        | 1                               | 10                                     |
|                   | 23       | P01903           | 254        | 2                               | 2                         | 2                               | 0                                      |
|                   | 24       | P01909           | 254        | 51                              | 66                        | 66                              | 0                                      |
|                   | 25       | P20036           | 260        | 19                              | 19<br>7                   | 19<br>7                         | 0                                      |
|                   | 26       | P28067           | 261        | 6                               |                           |                                 | 0<br>0                                 |
|                   | 27       | P30481           | 362        | 10                              | 11                        | 11                              | 0                                      |
|                   | 28<br>29 | P01911           | 266        | 10                              | 10                        | 10                              |                                        |
|                   | 30       | P04229<br>P13760 | 266<br>266 | 27<br>9                         | 31<br>10                  | 31<br>10                        | 0<br>0                                 |
|                   | 31       | P79483           | 266        | 30                              | 43                        | 43                              | 0                                      |
|                   | 32       | Q30154           | 266        | 25                              | 38                        | 38                              | 0                                      |
|                   | 33       | P01920           | 261        | 65                              | 85                        | 85                              | 0                                      |
|                   | 34       | P01920<br>P04440 | 261        | 41                              | 56                        | 56                              | 0                                      |
|                   | 35       | P28068           | 258        | 6                               | 7                         | 7                               | 0                                      |
|                   | 36       | P01730           | 458        | 3                               | 4                         | 3                               | 1                                      |
|                   | 37       | P01730<br>P01732 | 235        | 1                               | 2                         | 1                               | 1                                      |
|                   | 38       | P04234           | 171        | 1                               | 3                         | 1                               | 2                                      |
|                   | 39       | P05106           | 788        | 26                              | 59                        | 29                              | 30                                     |
|                   | 40       | P08571           | 375        | 2                               | 2                         | 2                               | 0                                      |
|                   | 41       | P08575           | 1304       | 7                               | 7                         | 7                               | 0                                      |
|                   | 42       | P08637           | 254        | 5                               | 7                         | 6                               | 1                                      |
|                   | 43       | P11215           | 1152       | 4                               | 4                         | 4                               | 0                                      |
|                   | 44       | P13591           | 858        | 4                               | 4                         | 4                               | 0                                      |
|                   | 45       | P15391           | 556        | 2                               | 2                         | 2                               | 0                                      |
|                   | 46       | P16284           | 738        | 4                               | 5                         | 5                               | 0                                      |
|                   | 47       | P20273           | 847        | 8                               | 8                         | 8                               | 0                                      |
|                   | 48       | P20701           | 1170       | 4                               | 4                         | 4                               | 0                                      |
|                   | 49       | P25063           | 80         | 2                               | 2                         | 2                               | 0                                      |
|                   | 50       | P28907           | 300        | 1                               | 1                         | 1                               | 0                                      |
|                   | 51       | P28908           | 595        | 5                               | 6                         | 6                               | 0                                      |
|                   | 52       | Q99062           | 836        | 11                              | 13                        | 11                              | 2                                      |

(continued on next page)

# Download English Version:

# https://daneshyari.com/en/article/8406333

Download Persian Version:

https://daneshyari.com/article/8406333

<u>Daneshyari.com</u>