Accepted Manuscript

Title: Multiple Roles of Adenomatous Polyposis Coli gene in Wnt Signalling – a Computational Model

Authors: Rejitha John Raji, Roschen Sasikumar, Elizabeth

Jacob

PII: S0303-2647(18)30060-1

DOI: https://doi.org/10.1016/j.biosystems.2018.08.001

Reference: BIO 3866

To appear in: BioSystems

Received date: 12-2-2018 Revised date: 23-7-2018 Accepted date: 7-8-2018

Please cite this article as: Raji RJ, Sasikumar R, Jacob E, Multiple Roles of Adenomatous Polyposis Coli gene in Wnt Signalling – a Computational Model, *BioSystems* (2018), https://doi.org/10.1016/j.biosystems.2018.08.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Multiple Roles of Adenomatous Polyposis Coli gene in Wnt Signalling – a Computational Model.

Rejitha John Raji*, Roschen Sasikumar and Elizabeth Jacob

CSIR-National Institute for Interdisciplinary Science and Technology,

Industrial Estate P.O, Trivandrum 695019, India.

* Email: rejithajohn@gmail.com

Abstract

The Adenomatous Polyposis Coli (APC) gene is a multifunctional gene that plays a major role in regulating the Wnt signalling pathway. The Wnt pathway, when activated by Wnt signalling molecules, initiates cell division. Mutation of APC disrupts the regulation and causes continuous activation of the Wnt pathway even in the absence of Wnt signals, thus causing uncontrolled cell proliferation.

APC regulates the Wnt pathway by controlling the formation of the nuclear complex β -catenin/TCF that initiates the transcription of the Wnt target genes. There are at least five mechanisms by which APC can regulate the formation of the β -catenin/TCF complex:

- 1. APC is part of the Destruction Complex that phosphorylates cytoplasmic β -catenin in a way that marks it for destruction.
- 2. APC retains cytoplasmic β -catenin by binding to it.
- 3. APC plays a role in controlling the distribution of β -catenin between Wnt signalling and cell-cell adhesion.
- 4. APC translocates to the nucleus and competes with TCF for binding to β -catenin within the nucleus.
- 5. APC promotes the export of β -catenin out of the nucleus.

This paper presents a computational model for the Wnt pathway that explicitly includes the above five roles of APC in regulating β -catenin/TCF formation. We use

Download English Version:

https://daneshyari.com/en/article/8406343

Download Persian Version:

https://daneshyari.com/article/8406343

<u>Daneshyari.com</u>