
Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier.com/locate/biosystems

Short Communication

Tellurium: An extensible python-based modeling environment for systems
and synthetic biology

Kiri Choia, J. Kyle Medleya, Matthias Königb, Kaylene Stockinga, Lucian Smitha, Stanley Gua,
Herbert M. Sauroa,⁎

a Department of Bioengineering, University of Washington, William H. Foege Building, Box 355061, Seattle, WA 98195, USA
b Institute for Biology, Institute for Theoretical Biology, Humboldt University, Berlin, Germany

A R T I C L E I N F O

Keywords:
Simulation
SBML
Software
Systems biology

A B S T R A C T

Here we present Tellurium, a Python-based environment for model building, simulation, and analysis that fa-
cilitates reproducibility of models in systems and synthetic biology. Tellurium is a modular, cross-platform, and
open-source simulation environment composed of multiple libraries, plugins, and specialized modules and
methods. Tellurium is a self-contained modeling platform which comes with a fully configured Python dis-
tribution. Two interfaces are provided, one based on the Spyder IDE which has an accessible user interface akin
to MATLAB and a second based on the Jupyter Notebook, which is a format that contains live code, equations,
visualizations, and narrative text. Tellurium uses libRoadRunner as the default SBML simulation engine which
supports deterministic simulations, stochastic simulations, and steady-state analyses. Tellurium also includes
Antimony, a human-readable model definition language which can be converted to and from SBML. Other
standard Python scientific libraries such as NumPy, SciPy, and matplotlib are included by default. Additionally,
we include several user-friendly plugins and advanced modules for a wide-variety of applications, ranging from
complex algorithms for bifurcation analysis to multidimensional parameter scanning. By combining multiple
libraries, plugins, and modules into a single package, Tellurium provides a unified but extensible solution for
biological modeling and analysis for both novices and experts. Availability: tellurium.analogmachine.org.

1. Background

Python has proven to be a very popular language for scientific
computing and data science. The ease of learning and use, coupled with
the open-source nature of the language has made it an ideal platform
for scientific computations. The systems and synthetic biology com-
munity have shown support for Python through the development of a
variety of simulation tools. These include PySCeS (Olivier et al., 2005)
with a focus on simulation via differential equations, structural ana-
lysis, and metabolic control analysis; SloppyCell (Myers et al., 2007),
with a focus on model fitting and calculating the resulting uncertainties;
pySB (Lopez et al., 2013), with a focus on rule-based reaction models;
or COBRApy (Ebrahim et al., 2013), with a focus on constraint-based
modeling. However, as can be observed from this brief overview, most
tools are limited in their scope and focus on a specific set of function-
alities. Additionally, the installation process of systems biology soft-
ware can often be quite cumbersome, requiring users to follow multiple
and often fragile steps for proper configuration. This can be problematic

for both novices and experts in the field.
Another critical issue in systems and synthetic biology is ensuring

exchangeability and reproducibility of models and simulation setups.
Over the past few years, the community has developed a variety of
standards to accurately capture models and simulation experiments.
These standards include the Systems Biology Markup Language (SBML)
(Hucka et al., 2001), which encodes the model, Simulation Experiment
Description Markup Language (SED-ML) (Waltemath et al., 2011),
which encodes the simulation setup, and the COMBINE archive
(Bergmann et al., 2014), which is the collection of files that represent
the full description of the model and associated simulation experiments.
For synthetic biology, the community has developed the Synthetic
Biology Open Language (SBOL) to describe synthetic designs (Beal
et al., 2016). Many of the existing tools support at least part of these
standards. For example, PySCeS supports SBML and a large portion of
SED-ML. SloppyCell also supports SBML, as does COBRApy. pySB offers
some support for reading and writing SBML models. However, none of
the Python tools described here supports the full set of standards

https://doi.org/10.1016/j.biosystems.2018.07.006
Received 31 March 2018; Received in revised form 18 July 2018; Accepted 18 July 2018

⁎ Corresponding author.
E-mail addresses: kirichoi@uw.edu (K. Choi), medjk@comcast.net (J.K. Medley), koenigmx@hu-berlin.de (M. König), viola.sox@gmail.com (K. Stocking),

lucianoelsmitho@gmail.com (L. Smith), stanleygu@gmail.com (S. Gu), hsauro@u.washington.edu (H.M. Sauro).

BioSystems 171 (2018) 74–79

Available online 25 July 2018
0303-2647/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03032647
https://www.elsevier.com/locate/biosystems
https://doi.org/10.1016/j.biosystems.2018.07.006
http://tellurium.analogmachine.org
https://doi.org/10.1016/j.biosystems.2018.07.006
mailto:kirichoi@uw.edu
mailto:medjk@comcast.net
mailto:koenigmx@hu-berlin.de
mailto:viola.sox@gmail.com
mailto:lucianoelsmitho@gmail.com
mailto:stanleygu@gmail.com
mailto:hsauro@u.washington.edu
https://doi.org/10.1016/j.biosystems.2018.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2018.07.006&domain=pdf


discussed above.
Therefore, our goal in developing Tellurium was to design a general

platform with broader scope by combining a large variety of third-party
tools while supporting various standards to ensure reproducibility.
Furthermore, the installation process should be as simple as possible to
make our tool easily accessible.

The core philosophy behind Tellurium is to provide a high-perfor-
mance platform accessible to both novices and experts. We bring to-
gether a wide variety of libraries and tools for researchers in systems
and synthetic biology. Tellurium is distributed using one-click installers
so the installation process is extremely simple. Tellurium provides a
convenient one-stop solution for many of the needs of the community,
which is especially helpful for novices who do not wish to deal with the
complexities of manual configuration of the various tools we distribute.
For systems biology modeling, Tellurium supports various modeling
standards including SBML, SED-ML, the COMBINE archive, and SBOL.
In addition, we distribute libRoadRunner (Somogyi et al., 2015) for
simulation, AUTO2000 (Doedel, 1981) for bifurcation analysis, and
Antimony (Smith et al., 2009), phraSED-ML (Choi et al., 2016), as well
as SimpleSBML (Cannistra et al., 2015) for streamlined model creation
and modification. Along with the tools distributed with Tellurium, we
provide a simple method for users to install additional Python packages,
making Tellurium highly extensible.

2. Implementation

Tellurium is implemented in a mixture of C, C++, and Python. The
software can be roughly partitioned into three functional pillars: (i)
standards support; (ii) modeling; and (iii) general utilities (Fig. 1).

Support for standards in systems and synthetic biology is included in
Tellurium via the respective libraries such as libSBML (Bornstein et al.,
2008), libSEDML (Bergmann et al., 2017), libCOMBINE (Bergmann and
Keating, 2016), libSBOL, and basic support for CellML (Hedley et al.,
2001) via Antimony. Many of these libraries come from third-party
developers and some have been augmented for Tellurium to make them
easier to use. For example, SimpleSBML simplifies model building in-
stead of requiring users to use low-level methods in libSBML. Tellurium
provides extensive layers to libSBML and libCOMBINE to simplify the
process of generating COMBINE archives. We use COMBINE archives to
facilitate simulation reproducibility.

The second pillar includes the modeling and numerical support for
model design and analysis. Tellurium comes with packages such as
Antimony (Smith et al., 2009) and phraSED-ML (Choi et al., 2016)
which translate model and simulation setup in SBML and SED-ML
format to human-readable counterparts. The numerical support

includes libRoadRunner which provides a variety of analyses including
ordinary differential equation simulation, Gillespie-based stochastic
simulation, metabolic control analysis, and structural analysis of net-
works via libStructural (Bedaso et al., 2018).

Another important function included in Tellurium is bifurcation
analysis, crucial for understanding models with multiple steady states.
This type of analysis can be difficult for a novice to perform, so a
wrapper to AUTO2000 is provided which interfaces itself to
libRoadRunner. By implementing it as a plugin for libRoadRunner,
AUTO2000 can directly access the simulation engine and perform
computations without the overhead of a cross-language API. This also
means that the bifurcation tool can be used outside of Python and
hosted by other tools. Note that unlike other AUTO2000 implementa-
tions, our implementation does not require an external compiler be-
cause this task is handled by libRoadRunner.

Finally, to demonstrate the flexibility in a Python ecosystem, we
also bundle COBRApy, which is one of the primary constraint-based
modeling packages. In addition, common Python packages that are
essential in scientific computing are bundled with Tellurium. These
include, but are not limited to, SciPy and NumPy (for a large variety of
numerical methods), SymPy (for symbolic manipulation), and plotting
libraries such as matplotlib and seaborn. Supplementary Table S1 lists
short descriptions of the packages discussed in this manuscript.

Tellurium is distributed with two interfaces: The first is Tellurium
Spyder, which is based on Spyder IDE and provides a MATLAB-like
environment for researchers who are already familiar with editor/
console type programming. Spyder IDE is a Python-based development
environment that comes with powerful tools like profiler and static
code analysis. Spyder IDE is ideal for modelers and developers who
prefer generating and debugging raw Python scripts. For those who
prefer notebook-like interfaces, we provide a Jupyter notebook-based
version called Tellurium Notebook. Jupyter notebook differs from
Spyder IDE as it creates documents containing live code, plots, narra-
tive texts, and equations. Moreover, Jupyter notebooks are interactive,
making it ideal for sharing and displaying the work with others. It is
also possible to install Tellurium and its dependencies in an existing
Python environment through pip. Examples of alternative hosts that
have employed Tellurium include PyCharm and Sublime Text.

3. Applications

In this section, we illustrate several use cases of Tellurium. In par-
ticular, we demonstrate various tools included in Tellurium as well as
its ability to integrate with other Python packages. We present ex-
amples of model building, simulation, and subsequent analysis tasks

Fig. 1. Overview of Tellurium. Tellurium is composed of three distinct functional pillars including standards support, modeling support, and utilities. Several third-
party Python packages come with Tellurium and additional packages can be installed if needed.

K. Choi et al. BioSystems 171 (2018) 74–79

75



Download English Version:

https://daneshyari.com/en/article/8406380

Download Persian Version:

https://daneshyari.com/article/8406380

Daneshyari.com

https://daneshyari.com/en/article/8406380
https://daneshyari.com/article/8406380
https://daneshyari.com

