
Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier.com/locate/biosystems

Short Communication

A portable structural analysis library for reaction networks

Yosef Bedasoa, Frank T. Bergmannb, Kiri Choia, Kyle Medleya, Herbert M. Sauroa,⁎

a Department of Bioengineering, William H. Foege Building, Box 355061, Seattle, WA 98195-5061, USA
b BioQuant/COS, Heidelberg University, Heidelberg, Germany

A R T I C L E I N F O

Keywords:
Simulation
Structural analysis
Software
Systems biology

A B S T R A C T

The topology of a reaction network can have a significant influence on the network's dynamical properties. Such
influences can include constraints on network flows and concentration changes or more insidiously result in the
emergence of feedback loops. These effects are due entirely to mass constraints imposed by the network con-
figuration and are important considerations before any dynamical analysis is made. Most established simulation
software tools usually carry out some kind of structural analysis of a network before any attempt is made at
dynamic simulation. In this paper, we describe a portable software library, libStructural, that can carry out
a variety of popular structural analyses that includes conservation analysis, flux dependency analysis and
enumerating elementary modes. The library employs robust algorithms that allow it to be used on large networks
with more than a two thousand nodes. The library accepts either a raw or fully labeled stoichiometry matrix or
models written in SBML format. The software is written in standard C/C++ and comes with extensive on-line
documentation and a test suite. The software is available for Windows, Mac OS X, and can be compiled easily on
any Linux operating system. A language binding for Python is also available through the pip package manager
making it simple to install on any standard Python distribution. The bulk of the source code is licensed under the
open source BSD license with other parts using as either the MIT license or more simply public domain. All
source is available on GitHub (https://github.com/sys-bio/Libstructural).

1. Background

One of the most fundamental processes in living organisms is the
chemical reaction where molecules combine, decompose, change con-
figuration or exchange molecular subunits. A network of chemical re-
actions will obey mass-conservation resulting in properties of the net-
work that are independent of the underlying reaction kinetics. In this
paper, we describe a new portable software library that provides many
facilities for analyzing the topological properties of reaction networks
as a result of mass-conservation.

When describing multiple reactions in a network, it is convenient to
represent the stoichiometric coefficients in a compact form called the
stoichiometry matrix, N (Reder, 1988). This matrix is a m row by n
column matrix where m is the number of species and n the number of
reactions. The columns of the stoichiometry matrix correspond to the
distinct chemical reactions in the network, the rows to the molecular
species, one row per species. The intersection of a row and column in
the matrix indicates the stoichiometric coefficient.

The stoichiometry matrix represents the connectivity of the network
and contains important information on the network's structural char-
acteristics. These characteristics fall into two groups, relationships

among the species as indicated by dependencies in the rows of the
stoichiometry matrix and relationships among the reaction rates due to
dependencies among the columns (Sauro and Ingalls, 2004). In this
paper, we will describe a software library called libStructural that
provides a wide variety of functions to analyze both row and column
dependences in a stoichiometry matrix. libStructural is not concerned
with constraint-based modeling (Bordbar et al., 2014) or metabolic flux
analysis (Morales et al., 2016). Instead it focuses on the structure of the
stoichiometry matrix.

1.1. Moiety conservation laws

One of the characteristics of biological network models is the con-
servation of certain molecular subgroups, termed moieties (Reich and
Selkov, 1981). A typical example of a conserved group in a model is the
conservation of the adenine nucleotide moiety, i.e. the total amount of
ATP, ADP, and AMP is constant during the evolution of the model.

Determining the conservation laws is important for several reasons.
One practical advantage is that the system equations in the form of
ordinary or stochastic differential equations can be reduced in size thus
making numerical analysis more efficient. This fact is exploited in many

https://doi.org/10.1016/j.biosystems.2018.05.008
Received 8 January 2018; Received in revised form 30 April 2018; Accepted 28 May 2018

⁎ Corresponding author.
E-mail addresses: bedasoy@uw.edu (Y. Bedaso), frank.bergmann@bioquant.uni-heidelberg.de (F.T. Bergmann), kirichoi@uw.edu (K. Choi), hsauro@u.washington.edu (H.M. Sauro).

BioSystems 169–170 (2018) 20–25

Available online 30 May 2018
0303-2647/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03032647
https://www.elsevier.com/locate/biosystems
https://doi.org/10.1016/j.biosystems.2018.05.008
https://github.com/sys-bio/Libstructural
https://doi.org/10.1016/j.biosystems.2018.05.008
mailto:bedasoy@uw.edu
mailto:frank.bergmann@bioquant.uni-heidelberg.de
mailto:kirichoi@uw.edu
mailto:hsauro@u.washington.edu
https://doi.org/10.1016/j.biosystems.2018.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2018.05.008&domain=pdf


modern modeling platforms including but not limited to SBW (Sauro
et al., 2003), Copasi (Hoops et al., 2006), PySCeS (Olivier et al., 2005),
VCell (Loew and Schaff, 2001), JWS Online (Peters et al., 2017), li-
bRoadRunner (Somogyi et al., 2015), and the SB Toolbox (Schmidt and
Jirstrand, 2006). A recent review of software provision in this area can
be found in Dandekar et al. (2012). In addition to reducing the size of
the model, reduction of the number of differential equations means that
the model's Jacobian matrix is non-singular (Sauro and Ingalls, 2004),
an important requirement for a number of numerical methods including
steady-state analysis and bifurcation analysis. The conservation laws
are also important for theoretical reasons because a non-singular Ja-
cobian is required for metabolic control analysis, stability analysis and
frequency analysis (Ingalls, 2004). Finally, conservation laws have very
practical implications for perturbation studies and targeted gene
knockouts (Eisenthal and Cornish-Bowden, 1998). In such circum-
stances, the conservation laws provide hard limits to how species levels
can change, at least over the time scale of the conservation law. The
conservation relationships can also lead to implicit regulatory effects in
a network as exemplified by the work of Markevich et al. (2004).

The libStructural library supports the computation of L, L0, and
Γ matrices (Reich and Selkov, 1981). In addition, the library will re-
order the stoichiometry matrix rows including row labels as appro-
priate.

1.2. Steady-state flux constraints

Whereas the rows of the stoichiometry matrix indicate dependencies
among the species, the columns of the stoichiometry matrix indicate
dependencies among the reaction rates (van der Heijden et al., 1994).
The libStructural library supports the computation of K, NDC, and
NIC matrices (Reich and Selkov, 1981). In addition, the library will
reorder the stoichiometry matrix columns including column labels as
appropriate. Fig. 1 summarizes the partitioning of the matrix into the
various subdivisions.

1.3. Elementary modes

Elementary modes (Zanghellini et al., 2013) are the simplest path-
ways within a metabolic network that can sustain a steady-state and at
the same time are thermodynamically feasible (Ataman and
Hatzimanikatis, 2015). Depending on the size of the metabolic network,
the number of elementary modes can range from no modes to billions of
modes. The full set of elementary modes represents the complete me-
tabolic potential of a given metabolic network and as a result is of in-
terest to the metabolic analysis and engineering communities.

The libStructural library computes elementary modes via a
refactored Metatool component (Kamp and Schuster, 2006) and

includes both integer and double variants as well as a refactored gEFM
library (Ullah et al., 2016).

2. Results

2.1. Software implementation

The core library for libStructural was originally developed by
Frank Bergmann. With the development of the C/C++ version of
libRoadRunner, libStructural was subsequently integrated into
libRoadRunner (Somogyi et al., 2015). In this paper, we describe the
separate and reusable libStructural library.

The core of libStructural is written in ISO C/C++ to achieve
maximum portability and interoperability. The software can be used on
Windows, Mac OS X, and Linux operating systems. Network models can
be supplied either directly as a raw stoichiometry matrix or indirectly as
an SBML model (Hucka et al., 2003). For SBML support we use the
libSBML library (Bornstein et al., 2008). In order to maintain in-
formation on the row and column reorderings during the calculations,
all row and columns of matrices can be labeled. The library relies
heavily on LAPACK (http://www.netlib.org/lapack/), a standard li-
brary for linear algebra that is used to carry out householder reflections
for the QR factorization (Golub and Van Loan, 1996).

The library itself is split into two parts. One part is used to wrap and
expose certain LAPACK functions and to implement other commonly
used linear algebra results not directly supported by LAPACK. These
include methods that can compute orthonormal null space vectors or
generate the reduced echelon forms using Gauss–Jordan matrix re-
duction. The second part implements the stoichiometric network spe-
cific methods. These include conservation analysis such as computing
the link and gamma matrices (conservation matrix), returning the re-
ordered row stoichiometry matrix and total amounts in each con-
servation law. In addition, the columns of the stoichiometric matrix are
also analyzed to generate the independent and dependent fluxes, in-
cluding the K matrix. Documentation is provided through readthedocs
(https://libstructural.readthedocs.io). The source code is licensed
under a combination of the modified BSD license, MIT (gEFM), and
public domain (libMetatool).

For computing elementary modes there are a wide variety of pub-
lished software tools. Rather than write our own we decided to reuse
existing software. We examined a wide variety of existing tools, and we
found only two, Metatool (Kamp and Schuster, 2006) and gEFM (Ullah
et al., 2016) that could be easily reused within our C/C++/Python
framework.

Metatool 4.3 is written in standard C and has a liberal open license.
It is therefore very easy to implement across different computing plat-
forms. We refactored the code to convert Metatool 4.3 into a reusable
library we call libMetatool. This allows Metatool to be linked to any
programming language. The refactoring was done such that
libMetatool can be used independently of libStructural. The one
major change to Metatool when refactoring was to use 64-bit integer
types for all calculations. This was done to improve the numerical
stability of the algorithms used by the integer version Metatool when
dealing with large models. Since the original Metatool source code is in
the public domain, the refactored Metatool source code is similarly
unrestricted. In order to deal with models with fractional stoichiome-
tries, we also distribute the double version of Metatool and a refactored
gEFM.

We also incorporated gEFM as a library which is a more modern
distribution that uses a completely different algorithm to Metatool. The
code was refactored by adding an API (Application Programming
Interface) and improved error handling and memory protection. The
addition of gEFM allows comparisons to be made between Metatool and
gEFM. For gEFM, we also provide a copy results to file method that can
be used for analyzing large models. This was to avoid returning very
large arrays directly to the Python console from gEFM. gEFM can be

Fig. 1. Partitioned reordered stoichiometry matrix: n=number of reactions;
m=number of species; NDC=partition of linearly dependent columns;
NIC=partition of linearly independent columns; NR=reduced stoichiometry
matrix; N0 partition of linearly dependent rows.

Y. Bedaso et al. BioSystems 169–170 (2018) 20–25

21

http://www.netlib.org/lapack/
https://libstructural.readthedocs.io


Download English Version:

https://daneshyari.com/en/article/8406407

Download Persian Version:

https://daneshyari.com/article/8406407

Daneshyari.com

https://daneshyari.com/en/article/8406407
https://daneshyari.com/article/8406407
https://daneshyari.com

