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a b s t r a c t

Based on the properties of the (convex) ε-subdifferential calculus, we introduce to a
general ε-variational inequality (formulated with the help of a set valued operator and
a perturbation function) a dual one, expressed by making use of the (Fenchel) conjugate
of the perturbation function. Under convexity hypotheses, we show that the fulfillment
of a regularity condition guarantees that the primal ε-variational inequality is solvable
if and only if its dual one is solvable. By particularizing the perturbation function, we
obtain several dual statements andwe succeed to generalize and improve a duality scheme
recently given by Kum, Kim and Lee. An example justifying this generalization is also
provided. Among the special instances of the general result, we rediscover also the duality
scheme concerning variational inequalities due to Mosco.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The issue of duality concerning variational inequalities was addressed in the literature for the first time by Mosco in
the 1970s (cf. [1]). The approach uses a symmetry property of the (convex) subdifferential of a proper, convex and lower
semicontinuous function defined on a real separated locally convex space (see (3) in Section 2). Since then, this problem
attracted the attention ofmany authors andmore general settings for the study of this issuewere considered (let usmention
here the generalizations to the vector case [2–5] and to the set-valued setting [6] or the duality concerning equilibrium
problems [7–10]).

The present paper is motivated by the following duality scheme concerning ε-variational inequalities proposed by Kum
et al. in [4]. For ε ≥ 0, we consider the ε-variational inequalities:

(VI)f ,Aε Find x ∈ Rn for which there exists v ∈ F(x),
s.t. ⟨v, x − x⟩ ≥ f (Ax) − f (Ax) − ε ∀x ∈ Rn,

(DVI)f ,Aε Find y ∈ Rm for which there exists w ∈ A(F−1(−A∗y)),
s.t. ⟨w, y − y⟩ ≤ f ∗(y) − f ∗(y) + ε ∀y ∈ Rm,

where F : Rn ⇒ Rn is a set valued operator, f : Rm
→ R is a proper, convex and lower semicontinuous function,

A : Rn
→ Rm is a linear mapping fulfilling A−1(dom f ) ≠ ∅, f ∗ is the (Fenchel) conjugate of f and A∗ is the adjoint
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operator of A. The authors of [4] call (DVI)f ,Aε the dual variational inequality of (VI)f ,Aε . It is proved in [4] that under the
regularity condition ri dom f ∩ Im A ≠ ∅ (where ri stands for the classical relative interior of a set and Im A is the image
of the linear operator A) (VI)f ,Aε is solvable if and only if (DVI)f ,Aε is solvable. Beyond the formula for the ε-subdifferential
of the function f ◦ A, the proof relies on a general duality principle similar to the one considered by Robinson [11] in the
context of composition of multifunctions (see also [12] for a duality principle for operator inclusions). Let us notice that the
study of ε-variational inequalities is motivated by the fact that in many (practical) situations one is interested in finding an
approximate solution of a variational inequality (see also [4, Proposition 2.1] for another aspect concerning approximation
of variational inequalities).

In this paper we extend the duality scheme of Kum et al. to the infinite dimensional setting. Instead of the function
f ◦ A in the formulation of (VI)f ,Aε , we consider a general perturbation function (we refer to [13–16] for a deep study of
the perturbation theory and the importance of it concerning duality in convex programming). We attach to this primal
ε-variational inequality a dual one, in which the conjugate of the perturbation function is used. By using the powerful
techniques of the (convex) ε-subdifferential calculus (which iswell developed in the literature, see [17–19,14])we show that
in case the function involved is proper, convex and a regularity condition is fulfilled, if the primal ε-variational inequality
is solvable then also its dual one is solvable. Conversely, when the dual ε-variational inequality is solvable and the function
involved is proper, convex and lower semicontinuous, then also the primal one is solvable (notice that for this implication
no regularity condition is needed).

We consider several particular cases of our general results and illustrate the theoretical aspects.We show that the duality
scheme of Kum et al. follows as a particular instance of the main results of this paper. Moreover, we improve the results
given in [4] by showing that [4, Theorem 2.1(i)] (concerning the implication (VI)f ,Aε is solvable ⇒ (DI)f ,Aε is solvable) holds
under weaker hypotheses (the lower semicontinuity of the function f is not needed and instead of the regularity condition
considered in [4] we use a weaker one) and that [4, Theorem 2.1(ii)] (which addresses the implication (DVI)f ,Aε is solvable
⇒ (VI)f ,Aε is solvable) is valid also in the absence of any regularity condition. We give also an example in order to justify the
use of weaker regularity conditions than the one considered in [4]. Finally, let us mention that the duality scheme proposed
by Mosco in [1] concerning variational inequalities can be seen as another particular instance of our main results.

2. Preliminaries

In this sectionwe recall the necessary notions and results from the literature in order tomake the paper as self-contained
as possible. The notations are standard and follow [13–16,20,21].

Consider X a real separated locally convex space and X∗ its topological dual space. We denote by w(X∗, X) the weak∗

topology on X∗ induced by X . For a nonempty set U ⊆ X , we denote by cone(U), aff(U), lin(U), int(U), cl(U), its conical
hull, affine hull, linear hull, interior, and closure, respectively. If U ⊆ X is a nonempty convex set, we consider its strong quasi-
relative interior (which plays an important role in the formulation of the regularity conditions considered in this paper)
defined by sqri(U) := {x ∈ U : cone(U − x) is a closed linear subspace of X}. Let us mention that int(U) ⊆ sqri(U) and
in case X is finite dimensional we have sqri(U) = ri(U), where ri(U) denotes the classical relative interior of U , that is
the interior of U relative to aff(U). For more on the properties of generalized interiority notions we invite the reader to
consult [14–16,22–25].

We denote by ⟨x∗, x⟩ (sometimes also by ⟨x, x∗
⟩) the value of the linear continuous functional x∗

∈ X∗ at x ∈ X .
Let us consider V ⊆ Y (Y being a real separated locally convex space) another nonempty set. The projection operator
prU : U × V → U is defined as prU(u, v) = u for all (u, v) ∈ U × V , while the indicator function of U, δU : X → R,
is defined as δU(x) = 0 if x ∈ U and +∞ otherwise (here R = R ∪ {±∞} is the extended real line).

For a function f : X → R we denote by dom f = {x ∈ X : f (x) < +∞} its domain and by epi f = {(x, r) ∈ X × R :

f (x) ≤ r} its epigraph. We call f proper if dom f ≠ ∅ and f (x) > −∞ for all x ∈ X . The Fenchel–Moreau conjugate of f is the
function f ∗

: X∗
→ R defined by f ∗(x∗) = supx∈X {⟨x∗, x⟩− f (x)} for all x∗

∈ X∗ and the biconjugate function (restricted to X)
is f ∗∗

: X → R defined as f ∗∗(x) = supx∗∈X∗{⟨x∗, x⟩ − f ∗(x∗)} for all x ∈ X . Let us mention some properties of the conjugate
function. We have the so called Young–Fenchel inequality: f ∗(x∗) + f (x) ≥ ⟨x∗, x⟩ for all x ∈ X and x∗

∈ X∗. Further, f ∗∗
≤ f

and according to the celebrated Fenchel–Moreau Theorem, if f is proper, then f is convex and lower semicontinuous if and
only if f ∗∗

= f (see [14–16,13]).
For x ∈ X such that f (x) ∈ R we define the ε-sudifferential of f at x, where ε ≥ 0, by

∂εf (x) = {x∗
∈ X∗

: f (y) − f (x) ≥ ⟨x∗, y − x⟩ − ε ∀y ∈ X}.

If f (x) ∈ {±∞} we take by convention ∂εf (x) = ∅. The set ∂ f (x) = ∂0f (x) is the classical (convex) subdifferential of f at x.
The ε-normal set ofU at x ∈ X is defined byNε

U(x) = ∂εδU(x), that isNε
U(x) = {x∗

∈ X∗
: ⟨x∗, y−x⟩ ≤ ε ∀y ∈ U}when x ∈ U ,

and Nε
U(x) = ∅ if x ∉ U . The normal cone of U at x ∈ X is NU(x) = N0

U(x), that is NU(x) = {x∗
∈ X∗

: ⟨x∗, y− x⟩ ≤ 0 ∀y ∈ U},
if x ∈ U and NU(x) = ∅ otherwise.

The following characterization of the ε-sudifferential of a proper function f at x ∈ dom f bymeans of conjugate functions
will be useful (see [14]):

x∗
∈ ∂εf (x) ⇔ f (x) + f ∗(x∗) ≤ ⟨x∗, x⟩ + ε. (1)
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