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a  b  s  t  r  a  c  t

The  stochastic  simulation  algorithm  (SSA)  based  modeling  is  a well  recognized  approach  to  predict  the
stochastic  behavior  of  biological  networks.  The  stochastic  simulation  of  large  complex  biochemical  net-
works  is a challenge  as it takes  a large  amount  of time  for simulation  due  to  high update  cost.  In order  to
reduce  the  propensity  update  cost, we  proposed  two algorithms:  slow  update  exact  stochastic  simula-
tion  algorithm  (SUESSA)  and  slow  update  exact  sorting  stochastic  simulation  algorithm  (SUESSSA).  We
applied  cache-based  linear  search  (CBLS)  in  these  two  algorithms  for improving  the  search  operation  for
finding  reactions  to be executed.  Data  structure  used  for incorporating  CBLS is  very  simple  and  the  cost
of  maintaining  this  during  propensity  update  operation  is very  low.  Hence,  time  taken  during propensity
updates,  for  simulating  strongly  coupled  networks,  is  very  fast;  which  leads  to reduction  of  total  simu-
lation  time.  SUESSA  and  SUESSSA  are  not  only  restricted  to elementary  reactions,  they  support  higher
order  reactions  too.

We  used  linear  chain  model  and colloidal  aggregation  model  to perform  a comparative  analysis  of
the  performances  of our  methods  with  the  existing  algorithms.  We  also  compared  the  performances  of
our methods  with  the  existing  ones,  for large  biochemical  networks  including  B  cell  receptor  and  Fc�RI
signaling  networks.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The dynamic behavior of large complex biochemical networks
introduces difficulties in understanding the state space of entities
and their interactions. In order to overcome these difficulties, some
mathematical modeling techniques including ordinary differential
equations (ODEs) have been introduced. ODEs have extensively
been used for capturing the time evolution of a biochemical sys-
tem. However, ODE based methods do not exhibit the system’s
stochastic behavior which has been proven to be an important fea-
ture depending on the nature of the system. The stochastic behavior
can exhibit the mechanism of complex biochemical processes, for
example, cell to cell variations of a system depending on the copy
numbers of the species in the system (Cao et al., 2004). Stochas-
tic simulation algorithms (SSAs), including direct method (DM)
and first reaction method (FRM), have been introduced for cap-
turing the stochastic behavior of a biochemical network (Gillespie,
1976, 1977). In DM and FRM, a biochemical network is assumed
to be generated through a well stirred (spatially homogeneous)
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biochemical system in which each reaction is associated with a
parameter termed as propensity. The propensity of each reaction is
proportional to the probability of occurrence of that reaction. Based
on the parameter propensity, DM and FRM decide which reaction
to occur and when to occur. The computational complexities of
these two methods are extremely high for simulating large com-
plex biochemical networks. In order to get rid of this issue, several
algorithms have been developed.

A priority queue based algorithm, called next reaction method
(NRM), has been developed, which is an improved version of FRM
(Gibson and Bruck, 2000). In NRM, the computational cost has
been reduced by introducing a dependency graph for propensity
updates. Another improved version, named as optimized direct
method (ODM), has been developed in Cao et al. (2004). ODM sorts
the reactions of the network, based on their rates, by perform-
ing a pre-simulation. The computational costs towards propensity
updates in ODM are less compared to NRM, as NRM needs extra
cost of maintaining the priority queue. Sorting direct method
(SDM), another version of DM,  has been introduced in McCollum
et al. (2006). It does not need any pre-simulation, rather it main-
tains an array holding the reaction indexes and sorts it gradually,
based on the reaction rates, during simulation. Some approxi-
mation methods, including �-leaping, R-leaping, K-leap, L-leap,
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slow-scale method, k˛-leaping and implicit �-leaping methods,
have been introduced in Gillespie (2001), Gillespie (2007), Gillespie
and Petzold (2003), Cao et al. (2005a,b, 2006), Peng et al. (2007),
Auger et al. (2006), Peng and Wang (2007), Cai and Xu (2007), and
Rathinam et al. (2003). These approximation methods reduce the
duration of the total simulation time by jumping over the sequences
of less critical reactions in the reaction firing event.

The methods including ODM and SDM have computational com-
plexities of the order of the number of reactions, and they are
basically suitable for modeling weakly coupled networks, e.g., the
linear chain model. However, the biochemical networks are mostly
complex and strongly coupled in which the number of reactions are
much higher than the number of species. Therefore, the methods
having computational complexities of the order of the number of
reactions take longer simulation times for modeling strongly cou-
pled networks. In order to overcome this issue, Ramaswamy et al.
have introduced the partial-propensity direct method (PDM) and
sorting partial-propensity direct method (SPDM) in Ramaswamy
et al. (2009), which have reduced the computational scaling upto
the order of the number of species, and thereby, achieved a signif-
icant speed up in execution time for simulating strongly coupled
networks. Some attempts on delay stochastic simulation algorithm
(DSSA) which is used for describing transcription and translation
processes of gene regulatory systems have been made in Barrio
et al. (2006, 2013), Leier et al. (2014), and Leier and Marquez-Lago
(2015).

A tree-based search algorithm has been introduced in Thanh
and Zunino (2014). This algorithm is based on Huffman tree which
has minimized the search depth of finding the next reaction
to occur. A composition-rejection based algorithm, viz., SSA-CR,
has been introduced, for which computational cost is indepen-
dent of network size (Slepoy et al., 2008). A partial-propensity
method combined with composition rejection (PSSA-CR) has been
developed in Ramaswamy and Sbalzarini (2010). In weakly cou-
pled networks, SSA-CR and PSSA-CR execute faster than PDM and
SPDM, whereas these composition-rejection based methods take
longer execution time in the case of strongly coupled networks.
An exact rejection based stochastic simulation algorithm (SSA),
called RSSA, has been developed in Thanh et al. (2014). RSSA exe-
cutes the reactions based on pre-computed propensity bounds, and
it avoids frequent propensity updates without compromising the
exactness of SSA. Some modified versions of RSSA, called RSSA-
Binary, RSSA-Lookup and SRSSA, have been introduced in Thanh
et al. (2015). A tree based search operation is maintained in RSSA-
Binary, whereas RSSA-Lookup is based on look up table search for
finding the reaction to be executed next. SRSSA creates several
independent trajectories simultaneously in a single execution run.
Another approach involving infrequent propensity updates, called
lazy updating method, has been introduced, which has been applied
to the sorting direct method (Ehlert and Loewe, 2014).

In this paper, we have developed two stochastic simulation
algorithms, viz., slow update exact stochastic simulation algorithm
(SUESSA) and slow update exact sorting stochastic simulation algo-
rithm (SUESSSA) for modeling strongly coupled networks. SUESSA
and SUESSSA do not rely on partial propensities like PDM and SPDM
which are limited to elementary reactions, and they can model net-
works with higher order reactions. The main advantage of these two
algorithms is that they are equipped with fast propensity update
operations. For this purpose, we have applied propensity bound
infrequent propensity update technique for reducing the number
of propensity updates. We  have used efficient data structures for
reducing their propensity update costs. The search operation for
finding the next reaction has been improved by applying cache-
based linear search technique. We  have used linear chain model,
colloidal aggregation model and two large biochemical networks,
including B cell receptor signaling network and Fc�RI signaling net-

work for comparing the simulation times of our methods with other
SSAs.

The organization of the paper is as follows. We  discuss our
proposed algorithms in Section 2. The comparative performance
analysis and validation of our methods with the existing ones have
been discussed in Section 3 and it is followed by discussion in Sec-
tion 4.

2. Methodology

Let us consider a biochemical system of M molecular species
C1, . . .,  CM, with state vector X(t) = [X1(t), . . .,  XM(t)]T representing
the number of molecules (populations) of the species at time t.
These species form a biochemical network through their conver-
sions/reactions. There are N reactions R1, R2, . . .,  RN in the network.
The system is well stirred (spatially homogeneous) in order to
focus only on the populations of the chemical species rather than
their individual positions in the system. Each reaction Ri is asso-
ciated with a parameter, called stochastic rate constant ki and the
corresponding stoichiometry. The probability of occurrence of the
reaction Ri at time t within a small duration dt is defined by a param-
eter ai(X(t))dt, where X(t) = x (Cao et al., 2004; McCollum et al.,
2006). The parameter ai is called the propensity of the reaction Ri,
which is the product of the substrate populations and the stochastic
rate constant.

The system dynamics is characterized by the chemical master
equation (CME) (Gillespie, 1976, 1977) which is given by

∂P(x, t|x0, t0)
∂t

=
N∑
i=1

[ai(x − vi)P(x − vi, t|x0, t0)

−ai(x)P(x, t|x0, t0)] (1)

Here, vi = [v1i, . . ., vMi]
T is the stoichiometry associated with each

reaction Ri. That is, vi is the ith column vector, with the same unit
as x, of M × N stoichiometric matrix. P(x, t|x0, t0) is the conditional
probability that X(t) will be x, given the initial species population
X(t0) = x0. It is very difficult to solve the chemical master equation
for large networks, and therefore, we  use some practical simulation
techniques, e.g., stochastic simulation algorithms (SSAs).

SSAs work by performing the following two  tasks: (a) finding
the index (�) of the reaction to occur, and (b) finding the time (�)
of occurrence of the reaction having index �. Let us calculate the
total propensity function as

a0(x) =
N∑
i=1

ai(x) (2)

The time � of occurrence of the reaction having index � can be
defined by the exponentially distributed random variable and is
given by Cao et al. (2004)

p(� = s) = a0(x) exp[−a0(x)s] (3)

There is enough justification in literature (Gillespie, 1976, 1977)
that P(x, t|x0, t0) can equivalently be considered as the probabil-
ity of occurrence of the reaction having index �. Thus the problem
boils down to finding (searching) the reaction indexes, which will
be executed next. This search may  be done in various ways. Here, we
developed a cache-based linear search technique for finding reac-
tions to be executed. Next we describe our proposed algorithms
SUESSA and SUESSSA along with their correctness and computa-
tional complexities.
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