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a  b  s  t  r  a  c  t

A  major  goal  of  systems  biology  is  to  build  predictive  computational  models  of  cellular  metabolism.
Availability  of complete  genome  sequences  and  wealth  of  legacy  biochemical  information  has  led  to the
reconstruction  of genome-scale  metabolic  networks  in  the  last  15  years  for several  organisms  across  the
three  domains  of  life. Due to paucity  of  information  on kinetic  parameters  associated  with metabolic
reactions,  the  constraint-based  modelling  approach,  flux  balance  analysis  (FBA),  has  proved  to be  a  vital
alternative  to investigate  the  capabilities  of  reconstructed  metabolic  networks.  In  parallel,  advent  of  high-
throughput  technologies  has  led to  the generation  of  massive  amounts  of  omics  data  on transcriptional
regulation  comprising  mRNA  transcript  levels  and  genome-wide  binding  profile  of transcriptional  regu-
lators.  A frontier  area  in  metabolic  systems  biology  has  been  the development  of  methods  to  integrate  the
available  transcriptional  regulatory  information  into  constraint-based  models  of  reconstructed  metabolic
networks  in  order  to increase  the  predictive  capabilities  of  computational  models  and  understand  the
regulation  of  cellular  metabolism.  Here,  we  review  the  existing  methods  to  integrate  transcriptional
regulatory  information  into  constraint-based  models  of metabolic  networks.

© 2016  Elsevier  Ireland  Ltd.  All  rights  reserved.
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1. Introduction

Extensive research by biochemists in the last century has
resulted in the chemical characterization of thousands of biochemi-
cal reactions (Kanehisa and Goto, 2000; Chang et al., 2009). Towards
the end of 20th century, complete genome sequences became
available for the first time (Fleischmann et al., 1995; Tomb et al.,
1997). In the post-genomic era, a focus in systems biology has
been the reconstruction of genome-scale metabolic networks using
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the annotated sequences along with available biochemical, genetic
and phenotypic information for organisms (Edwards et al., 2001;
Forster et al., 2003; Duarte et al., 2007; Feist et al., 2009; Thiele and
Palsson, 2010; Thiele et al., 2013). In the last 15 years, considerable
effort has led to the reconstruction of manually curated and high
quality genome-scale metabolic networks for more than 50 organ-
isms including humans (Durot et al., 2009; Feist et al., 2009; Thiele
and Palsson, 2010). However, the current pace of manual recon-
struction of high quality genome-scale metabolic networks lags far
behind the sequencing effort, and thus, automated methods have
also been developed to aid and accelerate the speed of metabolic
network reconstruction process (Henry et al., 2010; Schellenberger
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et al., 2011; Agren et al., 2013). Several studies have demonstrated
the utility of these genome-scale metabolic reconstructions for
biological discovery and hypothesis generation (Feist and Palsson,
2008; Oberhardt et al., 2009).

Current paucity of information on relevant parameters such as
rate constants, enzyme concentrations and metabolite concentra-
tions for most reactions renders kinetic modelling of genome-scale
metabolic networks infeasible. In the face of inadequate kinetic
information, the constraint-based modelling method, flux bal-
ance analysis (FBA), has proved to be a vital alternative to study
the capabilities of genome-scale metabolic networks (Varma and
Palsson, 1994; Kauffman et al., 2003; Price et al., 2004; Orth et al.,
2010; Lewis et al., 2012). In contrast to kinetic models, constraint-
based FBA primarily uses stoichiometric information (Heinrich and
Schuster, 1996; Schilling et al., 1999; Palsson, 2006) of reactions in
a metabolic network to predict the flux of reactions in steady state
and biomass synthesis rate in a given environmental condition. Due
to its simplicity, constraint-based FBA has become a popular frame-
work to study genotype-phenotype relationships and predict the
metabolic response to environmental and genetic perturbations
using genome-scale metabolic reconstructions (Feist and Palsson,
2008; Papp et al., 2009; Lewis et al., 2012).

Concurrently, advances in post-genomic high-throughput data
collection techniques has led to the generation of vast amounts
of omics data. High-dimensional multi-omics data provides quan-
titative information on multitude of cellular components across
diverse scales of organization. A major goal of systems biology is to
turn the recent explosion of omics data into predictive holistic mod-
els of biological systems (Kitano, 2002; Joyce and Palsson, 2006). In
this direction, contextualization of omics data within constraint-
based FBA models of genome-scale metabolic reconstructions can
lead to more accurate models. However, there are several chal-
lenges in integration of omics data stemming from the inherent
experimental and biological noise in such datasets (Quackenbush,
2004). Nonetheless, several constraint-based methods have been
developed to integrate experimental data, especially on transcrip-
tional regulation and gene expression, within the FBA framework
to build improved models (Åkesson et al., 2004; Covert et al., 2004;
Becker and Palsson, 2008; Blazier and Papin, 2012; Hyduke et al.,
2013). In this review, we  discuss the existing methods to inte-
grate regulatory information into constraint-based FBA models by
broadly classifying them into three different approaches (Covert
et al., 2001; Åkesson et al., 2004; Covert et al., 2004; Becker and
Palsson, 2008; Chandrasekaran and Price, 2010; Blazier and Papin,
2012; Hyduke et al., 2013; Kim and Reed, 2014). Such methods have
already proven successful in building context-specific metabolic
models for human tissues and predicting novel drug targets in
pathogens (Becker and Palsson, 2008; Folger et al., 2011; Bordbar
et al., 2012; Collins et al., 2012).

The review is organized as follows. In the second section, we
describe the constraint-based FBA framework. In the third section,
we discuss existing methods to integrate omics data within the FBA
framework as additional flux constraints to build context-specific
metabolic models. In the fourth section, we describe the recon-
struction and analysis of integrated regulatory-metabolic models
where Boolean transcriptional regulatory networks (TRNs) are
incorporated within the FBA framework. In the fifth section, we
discuss the need for automated methods to integrate information
on regulatory network architecture and expression measurements
within metabolic networks to reconstruct integrated regulatory-
metabolic models. Note that previous reviews in this area only
emphasize on methods that are descriptive in nature which are
presented in section 3 of this review. In comparison to previous
reviews, we here provide a much more comprehensive overview
of the area by also describing in detail the methods which are pre-

dictive rather than just descriptive in nature in sections 4 and 5 of
this review.

2. Flux balance analysis

Flux balance analysis (FBA) is a constraint-based modelling
approach that is widely used to investigate the capabilities of avail-
able genome-scale metabolic networks (Varma and Palsson, 1994;
Kauffman et al., 2003; Price et al., 2004; Orth et al., 2010; Lewis et al.,
2012). FBA primarily uses the information on the list of biochemical
reactions in an organism along with the stoichiometric coeffi-
cients of involved metabolites to predict the fluxes of all reactions
in the metabolic network. Such biochemical information is con-
tained within available organism-specific genome-scale metabolic
reconstructions. For any organism, the genome-scale metabolic
reconstruction contains information on all known metabolic reac-
tions and genes encoding enzymes catalysing different reactions
in the network (Palsson, 2006) (Fig. 1A). Notably, genome-scale
metabolic reconstructions for most organisms also include reac-
tions for transport of metabolites across the cell boundary, and a
pseudo-reaction capturing the production of biomass in terms of
their precursor metabolites (Fig. 1A).

In the FBA framework, the list of reactions along with the
stoichiometric coefficients of involved metabolites in a network
reconstruction is mathematically represented in the form of a sto-
ichiometric matrix S of dimensions m × n, where m denotes the
number of metabolites and n denotes the number of reactions in
the network (Fig. 1B). Entries in each column of the matrix S give the
stoichiometric coefficients of metabolites participating in a partic-
ular reaction, where negative coefficients signify consumption of a
metabolite, positive coefficients signify production of a metabolite,
and zero coefficients signify no participation of a metabolite in the
reaction (Fig. 1B). These stoichiometric coefficients of metabolites
in various reactions impose constraints on the flow of metabolites
in the network (Heinrich and Schuster, 1996; Schilling et al., 1999;
Palsson, 2006). Subsequently, the method capitalizes on these sto-
ichiometric constraints and assumes steady state to predict the
fluxes of all reactions in the network.

In any metabolic steady state, different metabolites attain a
mass balance wherein the rate of production of each metabolite
is equal to its rate of consumption, and this leads to the system of
mass balance equations given by:

S.v = 0 (1)

where v is the vector of fluxes through all reactions in the network
(Fig. 1B). For each metabolite in the network, Eq. (1) gives a linear
equation relating fluxes of various reactions in which the metabo-
lite participates (Fig. 1B). Since, the number of metabolites is much
less than the number of reactions in genome-scale metabolic net-
works of most organisms, the number of linear equations is much
less than the number of reaction fluxes (unknowns) to be deter-
mined. Thus, Eq. (1) typically leads to an under-determined system
of linear equations, and a large solution space of allowable fluxes
for genome-scale metabolic networks (Fig. 1B and C).

The size of the allowable space can also be reduced by incor-
porating additional constraints on reaction fluxes. Firstly, certain
reactions in the metabolic network are irreversible under physi-
ological conditions, and such thermodynamic constraints (Beard
et al., 2002; Orth et al., 2010) can be used to constrain the flux
of irreversible reactions. Secondly, the activity of specific enzymes
may  limit the flux through certain reactions. Thirdly, the availabil-
ity of nutrients in the growth medium can be used to constrain
the fluxes of transport reactions. Note that unlike stoichiometric
or mass-balance constraints, these additional constraints represent
bounds on reaction fluxes in the metabolic network (Fig. 1B).
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