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a  b  s  t  r  a  c  t

In this  paper  we  examine  the  time  T to  reach  a  critical  number  K0 of infections  during  an  outbreak  in
an  epidemic  model  with  infective  and  susceptible  immigrants.  The  underlying  process  X, which  was
first  introduced  by  Ridler-Rowe  (1967), is related  to  recurrent  diseases  and  it appears  to be analytically
intractable.  We  present  an  approximating  model  inspired  from  the  use of extreme  values,  and  we  derive
formulae  for  the  Laplace–Stieltjes  transform  of  T and  its moments,  which  are evaluated  by  using  an
iterative  procedure.  Numerical  examples  are  presented  to illustrate  the  effects  of  the  contact  and  removal
rates on  the  expected  values  of  T and  the  threshold  K0, when  the initial  time  instant  corresponds  to  an
invasion  time.  We  also  study  the  exact  reproduction  number  Rexact,0 and  the population  transmission
number  Rp, which  are  random  versions  of  the  basic  reproduction  number  R0.

©  2016 Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

The stochastic epidemic model with infective and susceptible
immigrants, as introduced by Ridler-Rowe (1967), describes the
dynamics of a homogeneously mixed population of individuals
by means of a time-homogeneous continuous-time Markov chain
(CTMC) X  = {X(t) = (M(t), N(t)) : t ≥ 0} defined on the state space
S = N0 × N0 with N0 = {0, 1, 2, . . .}, where M(t) and N(t) denote
the numbers of susceptible individuals and infectives, respectively,
at time t. The model accounts for four basic events: infection of
a susceptible individual, immigration of a susceptible individual,
immigration of an infective, and removal (or death) of an infective.
Four strictly positive parameters are used at the outset, namely the
per capita contact rate �, the immigration rates ε and � of infectives
and susceptible individuals, and the removal rate per infective �.
For initial numbers of m ∈ N0 susceptible individuals andn ∈ N0
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infectives, the hypotheses for the model (Fig. 1) are set out by
specifying the non-null transition rates of X  as follows:

q(m,n),(m′,n′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�mn, if (m′, n′) = (m − 1, n + 1),

ε, if (m′, n′) = (m, n + 1),

�, if (m′, n′) = (m + 1, n),

�n, if (m′, n′) = (m, n − 1),

(1)

and q(m,n) =− q(m,n),(m,n) = �mn + ε + � + �n. Note that, by Anderson
(1991, Lemma  3.1 and 3.2), the process X  is regular and recurrent
positive since ε + � > 0.

Similarly to the Bartlett model (Bartlett, 1956; Reuter, 1961,
Example 2), the model defined by (1) appears to be totally
intractable, but various special cases have been extensively studied.
The general stochastic epidemic (Bailey, 1975) is obtained by select-
ing ε = � = 0, which yields a finite state space since no immigration
can occur. States of the form (m, 0) with m ∈ N0 become absorbing
states and, once the process X  hits the n-axis, it executes a simple
death process down it until it is absorbed at (0, 0). One quantity
which is analytically tractable and does supply some information
about the general stochastic epidemic is the total size W of the epi-
demic. The exact distribution of W has been determined in several
ways and by as many authors; for instance, a simple proof based on
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Fig. 1. Transitions among states in the epidemic model X  with infective and susceptible immigrants.

the embedded jump chain can be found in Anderson (1991, Section
9.4), where the reader may  also find two versions (Rajarshi, 1981)
of the threshold theorem. In a recent work, Black and Ross (2015)
develop a new method for computing the distribution of W,  which
is based on the replacement of the original numbers X(t) = (M(t),
N(t)) of susceptible and infectives by a bivariate representation
Z(t) = (Z1(t), Z2(t)) in terms of the numbers of infection and recovery
events at time t. By using a co-lexicographic labeling of states for
the resulting process {Z(t) : t ≥ 0}, Black and Ross (2015) derive an
iterative method in a variety of Markovian models, including the
general stochastic epidemic, a variant with a phase-type infectious
period distribution and a model with waning immunity.

For the process X  defined in (1), Ridler-Rowe (1967) obtains
certain limiting probabilities of the population size when immigra-
tion of both susceptibles and infectives into the population takes
place; more concretely, it is shown in Ridler-Rowe (1967) that
the long-term distribution of the process X, as �→ 0 +, tends to its
counterpart for � = 0. A more important result (Ridler-Rowe, 1967,
Theorem 1) states that, for initial numbers of m0 susceptibles and
n0 infectives, the infectives almost surely die out at some time,
with the mean of the time �(m0, n0) at which this event first occurs
satisfying

�(m0, n0)∼�−1 log(m0 + n0), (2)

uniformly as m0+ n0 → ∞ with n0 > 0. We  aim to complement the
treatment of Ridler-Rowe (1967) by focusing here on the time T
to reach a certain number K0 of infections during an outbreak. The
value K0 may  in a sense be regarded as a critical threshold at which,
when a typical outbreak is in progress, the population starts to be
saturated with the disease. In analyzing the distribution of T, we
shall replace the bivariate process X  by an augmented version (X, Y)
allowing us to record the number of infections that take place dur-
ing the outbreak. Our approach is based on the distribution of the
maximum number of susceptible individuals in the population, and
it is related to the use of extreme values in two-species compe-
tition processes (Gómez-Corral and López García, 2012a,b, 2015),
where the maximum number of individuals alive at an arbitrary
time is seen as an important measure in studying the effects of
overpopulation in the ecosystem.

For recurrent diseases, the use of extreme values is equally
applicable to other probabilistic descriptors, such as the exact
reproduction number Rexact,0 and the population transmission
number Rp; for convenience, we recall here that Rexact,0 is a random
variable that counts the exact number of secondary cases produced
by a focal infective during its entire infectious period, whereas Rp

is defined as the exact number of secondary cases produced by
all currently infective individuals prior to the first recovery. The
exact reproduction number is first introduced and evaluated by
Ross (2011) in the setting of SIS and SIR epidemics for a homo-
geneously mixed population of N individuals, including the cases
of exponentially distributed infectious periods and a two-phase

gamma  infectious period distribution, and the random variables
Rexact,0 and Rp are then presented by Artalejo and López-Herrero
(2013) as two alternative measures that do not count repeated con-
tacts that the basic reproduction number R0 overestimates. The
measures Rexact,0 and Rp are applied by Economou et al. (2015,
Section 3, Appendix D) to the spread of a respiratory disease and
infections caused by nosocomial pathogens in intensive care units,
where heterogeneous contacts are appropriately translated into a
directed graph G and a 2N-state Markov chain model.

Models for recurrent diseases usually treat the epidemic events
of infection and removal of an infective in identical ways to
standard epidemics, but they differ in their treatment of demo-
graphic forces. For example, in the Martini model (Anderson and
May, 1991; Nåsell, 1999, Section 2), individuals are all subject to
an immigration-death process, with the death-rate independent
of the state of infection, and all newly immigrated individuals are
susceptibles, so that the infection of susceptible individuals and
the removal of an infective are treated in the same way  as in the
standard SIR model. The Bartlett model (Nåsell, 1999, Section 3)
differs from the Martini model only in the sense that no deaths
of individuals are assumed to occur; further work on the resulting
model has been published by Pollett and Stewart (1994), Ridler-
Rowe (1967), Stewart and Bebbington (1996), and Stirzaker (1975).
The paper by Nåsell (1999) is a good summary on the Martini and
Bartlett models, and it presents a review of Bartlett’s work; specifi-
cally, the interest of Nåsell (1999) is in the problem of determining
the time to extinction in recurrent diseases, which is proved to
be a surprisingly difficult matter. The Martini and Bartlett models
(Nåsell, 1999, Sections 2 and 3) omit factors that are known to be
of importance in certain recurrent diseases, such as age-dependent
exposure and seasonality transmission (Schenzle, 1984) and non-
exponential distributional assumptions on waiting times (Keeling
and Grenfell, 1997).

The paper is organized as follows. To begin with, we define in
Section 2 the underlying Markov chain model, which is formulated
as a reducible CTMC (X, Y)  over a state space consisting of a single
class of communicating transient states, and two sets of absorbing
states that allow us to reflect the end of an outbreak and how the
critical threshold K0 of infections might be eventually reached dur-
ing the outbreak. In Section 3, we characterize the distribution of T
in terms of its Laplace–Stieltjes transform, which is seen to satisfy
a system of linear equations that is not amenable to numerical
implementation. Therefore, we  adopt an approximating procedure
that, for large enough numbers of susceptibles, examines the
dynamics of the process (X, Y)  till absorption. Numerical examples
in Section 4 are presented to illustrate the effects of the contact rate
� and the removal rate � on the expected values of T, as the initial
time instant is an invasion time. We  close with a few concluding
remarks in Section 5. We  summarize in Appendices A and B the
analytical treatment of the random measures Rexact,0 and Rp of
disease spread, and we  present in Appendix C the distribution of
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