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a  b  s  t  r  a  c  t

Replication  can  be envisaged  as a computational  process  that  is able  to  generate  and  maintain  order
far-from-equilibrium.  Replication  processes,  can  self-regulate,  as the  drive  to replicate  can  counter  degra-
dation processes  that  impact  on  a system.  The  capability  of  replicated  structures  to  access  high quality
energy  and  eject  disorder  allows  Landauer’s  principle,  in  conjunction  with  Algorithmic  Information  The-
ory,  to  quantify  the  entropy  requirements  to maintain  a system  far-from-equilibrium.  Using  Landauer’s
principle,  where  destabilising  processes,  operating  under  the  second  law  of thermodynamics,  change  the
information  content  or the algorithmic  entropy  of  a system  by �H  bits,  replication  processes  can  access
order,  eject  disorder,  and  counter  the  change  without  outside  interventions.  Both  diversity  in replicated
structures,  and the coupling  of  different  replicated  systems,  increase  the  ability  of  the  system  (or  sys-
tems)  to self-regulate  in  a changing  environment  as  adaptation  processes  select  those  structures  that
use  resources  more  efficiently.  At the level  of the  structure,  as selection  processes  minimise  the  infor-
mation  loss,  the  irreversibility  is  minimised.  While  each  structure  that  emerges  can  be  said  to be  more
entropically  efficient,  as such  replicating  structures  proliferate,  the  dissipation  of the  system  as  a  whole
is higher  than  would  be the  case  for  inert  or  simpler  structures.  While  a detailed  application  to most  real
systems  would  be  difficult,  the approach  may  well  be  useful  in  understanding  incremental  changes  to
real  systems  and  provide  broad  descriptions  of  system  behaviour.

©  2016  The  Author.  Published  by Elsevier  Ireland  Ltd.  This  is an  open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Mathematicians have developed Algorithmic Information The-
ory (AIT), and the associated concept of Kolmogorov or algorithmic
complexity, to measure the computational resources needed to
describe an object by specifying a string of characters that rep-
resent the object. Developments in mathematics have included
measures of randomness (Martin-Löf, 1966; Gács, 1980); deeper
insights into Gödel’s theorem (Chaitin, 1974); modelling data with
the ideal form of the Minimum Description Length (Vitányi and Li,
2000) and Bayesian prediction (Hutter, 2007). AIT has also been
used to enquire into deep philosophical questions about the uni-
verse (Chaitin, 2004; Calude and Meyerstein, 1999; Hutter, 2010;
Davies, 2003). Devine (2014a) has used AIT to show there is no
need to define a fourth law of thermodynamics to explain order
in the universe as postulated by the Intelligent Design community
(Dembski, 2002). However, the use of AIT to study natural systems
has been somewhat limited (but see Zenil et al., 2012; Ratsaby,
2008). In addition, Adami (2002) and Adami and Cerf (2000) have
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defined ‘physical complexity’ conceptually in terms of the environ-
mental fit of a structure measured by the reduction in the length of
the algorithmic description of the structure, given the information
contained in its environment. For practical reasons the measure is
applied using the Shannon entropy for an ensemble of structures.
A comprehensive review of the mathematical background can be
found in Li and Vitányi (2008), while a review tailored for scientists
is available (Devine, 2014).

An important point is that the algorithmic complexity, when
defined with self-delimiting coding, becomes an entropy measure
called the ‘algorithmic entropy’. As Section 3 outlines, while the
algorithmic entropy is conceptually different from the traditional
entropies, the algorithmic entropy for a typical microstate in an
equilibrium configuration is effectively the same as the Shannon
entropy and, allowing for units, the entropy of statistical mechan-
ics, once allowance is made for the relatively short algorithm that
may  be required to define the system (Zurek, 1989a). The algorith-
mic  entropy provides a convenient tool to track entropy changes
when the states of a system change. It has a clearly defined mean-
ing for non-equilibrium situations, while being an entropy measure
that is consistent with the traditional entropies for the equilib-
rium macrostate that emerges when the non equilibrium system
is isolated (Devine, 2009).

http://dx.doi.org/10.1016/j.biosystems.2015.11.008
0303-2647/© 2016 The Author. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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This paper applies the tools algorithmic entropy to the emer-
gence and maintenance of order in natural systems distant from
equilibrium. The starting point of the AIT approach is that the
instantaneous configuration or state of a natural system can be
specified by a string of characters in an appropriate state space
(see Section 3). The algorithmic entropy of a system’s instanta-
neous configuration is the minimum number of bits of information
needed to specify this string of characters. By definition, the
measure is the number of bits in the shortest algorithm using self-
delimiting coding which, when run on a Universal Turing Machine
(UTM), halts after specifying the string representing a configuration
in the natural world.

As is mentioned below, an important feature is that, as the
algorithmic entropy is a function of state, only entropy differences
matter and differences of algorithmic entropy are independent of
the UTM used. This is a consequence of the fact that one UTM
can simulate any other, and the simulation constant (the length
of the string that allows one machine to simulate another) can-
cels for entropy differences (Chaitin, 1975; Li and Vitányi, 2008).
Machine independence allows the algorithmic entropy to quantify
the order embodied in a system, to capture its information con-
tent, and to provide the thermodynamic constraints that govern
the emergence of local order. Furthermore, AIT provides a measure
for the distance of a natural system is from equilibrium in terms
of the number of information bits that must be added to the sys-
tem to shift it from an ordered to an equilibrium state. Algorithmic
entropy is able to offer new insights into natural world systems
as it provides a tool to inquire into replication processes recogni-
sing that replication is core to many natural systems. The critical
point is that the algorithmic entropy of a system of repeated struc-
ture is low (Devine, 2009) and relatively few bits are required to
specify a system of repeated structures. The algorithm that spec-
ifies a system only needs to specify the structure once and then
copy, or generate, repeats by a short routine. This contrast with the
number of bits needed to specify a system where each structure
must be independently defined. It follows that replication is a nat-
urally ordering process that reduces the algorithmic entropy of a
system in a quantifiable way. Provided resources are available, and
high entropy waste can be ejected, replicated structures are more
likely to emerge than similar structures produced by other natural
process.

The critical understanding behind the application of AIT to the
natural world is that the physical laws that drive a system from
one state to another can be seen as computations on a real world
Universal Turing Machine. As algorithmic entropy differences are
independent of the UTM used, the algorithmic entropy derived
from a programme that maps a real word computation by manip-
ulating bits in a reference UTM in the laboratory, is the same as the
equivalent number of bits derived from the real world UTM. The
flow of bits or information through the two systems is the same.
Section 3 points out, the length of the shortest, appropriately coded,
algorithm that generates a particular string on a UTM defines H,
the algorithmic entropy of this string in bits. It is when these nat-
ural computation processes, operating under physical laws, eject
disorder that more ordered or low entropy structures are left
behind.

Landauer’s principle (Landauer, 1961) formalises the under-
standing of the computational processes embodied in real world
computations and provides a tool to inquire into the emergence and
maintenance of order in these real world systems (Bennett, 1973,
1982, 1988; Zurek, 1989b). Landauer’s principle states that where
one bit of information in a computational machine operating at a
temperature T is erased, at least kBT ln 2 Joules must be dissipated.
In a conventional computer this dissipation appears as heat pass-
ing to the non-computational parts of the system. However, where
the length of the algorithmic description of the state of a system

changes when �H bits are removed, the corresponding thermo-
dynamic entropy change in the real world system is kB ln 2�H.
Similarly, �H bits must be returned to the system to restore it to
the initial state. There have been objections to Landauer’s principle,
the major one being the claim that logical reversible computations
are not thermodynamically reversible. Bennett (2003) rebuts this
with examples that connect logical reversibility with thermody-
namic reversibility. Leff and Rex (1990), in discussing the paradox
of Maxwell’s demon, bring together the key arguments to resolve
the issues involved. Recently, Bérut et al. (2012) have provided
experimental confirmation of Landauer’s principle.

The entropy changes of both living and non-living natural sys-
tems are constrained by the same laws. This allows one to apply
the entropy and energy requirements of the process of replica-
tion to very simple systems and carry the initial insights over to
biologically complex living systems. However in order to take this
argument further, the next section explores replication processes,
while the section following outlines the principles of AIT. Later
Section 4 deals with some conceptual issues around the reversibil-
ity of natural laws. Section 4.3 shows the relationship between the
traditional entropies and algorithmic entropy and this leads to the
algorithmic formulation of the second law of thermodynamics in
Section 5. Once these issues have been clarified that paper uses the
AIT approach to identify the following characteristics of replicated
systems.

• When order is being destroyed through degradation processes
driven by the second law of thermodynamics, replication pro-
cesses that access high quality energy and eject disorder, are able
to restore the system to the original ordered set of configurations.
In essence, replication processes use natural laws to self-regulate
to maintain a system far-from-equilibrium.

• Variation in a system of replicated structures provides a natu-
ral mechanism to stabilise the system against change. In other
words, variation can maintain the system in a stable configura-
tion through adaptive evolutionary-like processes. AIT provides
a reasonably convincing argument that, in many situations, those
variants that persist in a changing environment are those that use
resources more efficiently and have lower entropy throughputs.

• Coupled and nested replicator systems create greater stability
against change by co-evolving as, from an entropy perspective,
the replicated structures use resources more efficiently. This effi-
ciency, called here ‘entropic efficiency’ would seem to be an
important constraint on evolutionary selection processes that
occur in biology. Nevertheless, while each replicated structure
is efficient in this sense, the number of interdependent or nested
system of replicated structures increases to ensure that overall,
the high quality energy degrades more effectively than would
otherwise be the case (Schneider and Kay, 1994).

2. Replication processes

Ordered structures emerge when replication processes trigger
a chain reaction that creates repeats of the initial structure. Two
physical examples of such a replicating system are a crystal that
forms from the liquid phase and coherent photons that emerge
through stimulated emission. Biological examples include an auto-
catalytic set, bacteria that grow in an environment of nutrients and
the growth of a biological structure such as a plant. In the last exam-
ple, as different genes are expressed in different parts of the plant,
variations of the basic structure emerge at these points. In general,
replication involves physical or biological structures that repro-
duce by utilizing available energy and resources and, at the same
time, ejecting excess entropy as heat and waste. Freitas and Merkle
(2004) have outlined different types of replication. Maturana and
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