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a b s t r a c t

Biological systems are able to recognise temporal sequences of stimuli or compute in the temporal
domain. In this paper we are exploring whether a biophysical model of a pyramidal neuron can detect and
learn systematic time delays between the spikes from different input neurons. In particular, we inves-
tigate whether it is possible to reinforce pairs of synapses separated by a dendritic propagation time
delay corresponding to the arrival time difference of two spikes from two different input neurons. We
examine two subthreshold learning approaches where the first relies on the backpropagation of EPSPs
(excitatory postsynaptic potentials) and the second on the backpropagation of a somatic action potential,
whose production is supported by a learning-enabling background current. The first approach does not
provide a learning signal that sufficiently differentiates between synapses at different locations, while in
the second approach, somatic spikes do not provide a reliable signal distinguishing arrival time differ-
ences of the order of the dendritic propagation time. It appears that the firing of pyramidal neurons shows
little sensitivity to heterosynaptic spike arrival time differences of several milliseconds. This neuron is
therefore unlikely to be able to learn to detect such differences.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The detection of sequences of sensory inputs with specific short
time delays (e.g., velocity sensitive motion detection or decoding
of the firing of Geniculate lagged cells, see Saul, 2008) is a func-
tion of biological systems. Sequence detectors are usually modelled
as coincidence detectors that exploit appropriate delays of asyn-
chronous individual input to cause a coincidence after the arrival
of the last input of the sequence (see for example Branco et al.,
2010). Given the adaptability of neural systems, the question arises
as to whether learning mechanisms exist that develop appropriate
coincidence detectors and then stabilize them during use.

The widely used Spike Timing Dependent Plasticity (STDP)
(Markram et al., 27; Bi and Poo, 1998; Zhang et al., 1998;
Froemke and Dan, 2002; Dan and Poo, 2004) learning rule nor-
mally requires the postsynaptic neuron to fire a spike and will
reinforce all synapses with inputs arriving shortly before that spike.
Synapses on distant dendrites whose earlier inputs also contribute
to the spike undergo a much weaker reinforcement than proximal
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dendrites and end up disappearing when resource limitations are
considered in the model, as proposed by Letzkus et al. (2006).
Branco et al. (2010) have shown that, on the contrary, synapses
at various distances from the soma stay strong and contribute to
sequence-specific neuronal responses. They did that by activating
a succession of synapses by optical uncaging and noted that if the
uncaging sequence moves from distal to proximal synapses, the
soma showed a higher increase in potential than if the sequence
moved away from the soma. Given the results by Branco et al.
(2010), it should be possible to reinforce synapses at any distance.

In this paper, we are interested in reinforcing pairs of synapses
that are separated by a propagation time delay corresponding to
the arrival time difference of spikes from two different input neu-
rons. We initially examined whether a detector based on dendritic
propagation delays in a biophysical model of a pyramidal neuron
(Letzkus et al., 2006) can be developed in a bottom-up, unsuper-
vised fashion, i.e., without the soma firing a prior spike to trigger
learning on pre-synaptic inputs, following a hypothesis formulated
by Bugmann and Christodoulou (2001). A bottom-up approach is in
the spirit of experiments conducted by Marom and Shahaf (2002)
showing learning without supervisory spiking by the target. The
examined mechanism is based on non-linear summation of synap-
tic EPSPs (Excitatory Postsynaptic Potentials) and their effects, as
described for example in Denham and Denham (2001), followed by
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the backpropagation of the summed EPSP to the dendrites, trigg-
ering a learning mechanism at the originating synapse. Simulating
this initial approach revealed that the learning mechanism appears
to be insufficiently sensitive to differences in time delays. This lead
to the development of a second approach using a backpropagating
action potential (AP).

In the second approach, a background input current is added
to the neuron (at the somatic compartment), to allow the coin-
cidence of pairs of small EPSPs to generate a spike that can then
activate learning mechanisms when backpropagating. That back-
ground current can be seen as a “learning-enable” signal that is
activated when the organism decides that there is a need to learn
the current input situation. These processes are designed to allow
learning of weights in conditions where they are initially too weak
to induce output spikes.

A key element of both approaches is the assumption that inputs
from each presynaptic neuron initially target several pre-existing
synapses at various positions on the dendrite. These synapses have
a probabilistic behaviour and will activate at most one at a time,
thus probing various dendritic propagation times (Bugmann and
Christodoulou, 2001). The learning rule should then select synaptic
pairs separated by the appropriate distance and reinforce them.

This approach differs from the supervised approach used by
van Leeuwen (2004) who assumes synaptic relocation along the
dendritic tree, or the model by Hüning et al. (1998) that assumes
delay modification. The principle of selection of existing synapses
is also used by Gerstner et al. (1998), where the time differences
between pre- and postsynaptic spikes determine weight changes,
or the work by Eurich et al. (2000) who use a Hebbian learning rule
depending on correlations between pre- and postsynaptic activity
within a certain time window. Senn et al. (2002) also proposed the
use of stochastic synapses, for adapting synaptic delays. Note that
the problem treated here is different from that of detecting tem-
poral patterns in a single input spike train, like in Hunzinger et al.
(2012), or global oscillations in multiple spike trains like in Kerr
et al. (2013). In the context of dendritic delays selection, in this
paper we examine the capability of a pyramidal neuron to provide
a learning signal selective enough to certain input time differences.

2. Methods

2.1. Overview

Fig. 1 shows a simplified sketch of our model’s architecture. Four
synapses attach to a neuron’s dendrite at increasing distances from
the soma. The synapse that is closest to the soma, synapse B, origi-
nates from presynaptic neuron B. The rest of the synapses, A1, A2
and A3, originate from presynaptic neuron A.

Presynaptic neurons A and B fire the same spike trains with a
fixed time delay, �t. In other words, whenever neuron A fires at a
time t, B fires at t + �t. In this paper, we aim at reinforcing synapse
A2. We consider two scenarios (Fig. 1):

(i) An EPSP from A2 arrives at B after �t time, thus coinciding
with the time the EPSP at B is created. The coinciding EPSPs are
amplified, creating an increase in postsynaptic potential at B,
which travels back to the A synapses.

(ii) The EPSPs from A2 and B coincide at their arrival at the soma
and trigger a somatic spike, creating a back-propagating action
potential which travels back to the synapses.

In both cases, the back-propagating potential is expected to
cause weight changes in the active synapses (i.e., the synapses that
have recently been active).

Soma

BA1A2A3

cΔt

Back-propagating EPSP

Back-propagating action potential

Fig. 1. Schematic of our model’s architecture consisting of a simple neuron with 4
synapses. B is a proximal synapse, while synapses A1–3 are at increasing distances
from the soma. All A-synapses originate from the same pre-synaptic neuron (neuron
A) and B originates from a different one (neuron B). See the text for an explanation
of the two back-propagation diagrams.

The purpose of both scenarios is to make the post-synaptic
neuron sensitive to the firing delay between pre-synaptic neu-
rons A and B, by reinforcing only synapse B and the corresponding
A-synapse whose distance from B is such that the EPSP from A coin-
cides with the EPSP from B, at location B. In other words, if c is the
propagation speed and �t is the firing delay between pre-synaptic
neurons A and B, the learning mechanism should reinforce an A-
synapse that is at a distance c�t from synapse B. In all our scenarios,
the A-synapse that is located at the ideal distance from B will be
labelled A2. Our methods require that synapses are stochastic with
a low probability of release (Pun et al., 1986; Redman, 1990; Senn
et al., 2002), since synapses A1, A2 and A3 all originate from the
same pre-synaptic neuron, but should receive individual reinforce-
ment. By setting the release probability sufficiently low, we can
consider that the probability of having two or more A-synapses
active at the same time is negligible.

The main difference between the two approaches is the lack
of somatic spiking in the first approach. The first scenario relies on
the amplification and backpropagation of a potential, caused by the
coinciding EPSPs at the dendritic location of synapse B. Plasticity, in
this scenario, would occur as a result of the changes caused along
the dendrite by the backpropagating amplified EPSP, in the absence
of somatic spiking. The second scenario follows a more traditional
approach to learning, where the coinciding EPSPs trigger a somatic
action potential that is able to cause synaptic changes based on a
STDP-type learning rule.

2.2. Model

For our simulated experiments, we used the NEURON sim-
ulation environment (Hines and Carnevale, 1997) using a
reconstructed layer 5 pyramidal neuron model, originally built by
Stuart and Spruston (1998). This model was modified by Letzkus
et al. (2006)1 to account for active properties, by including voltage-
gated ion channels at the following densities (in pS �m−2):

• Soma: gNa = 3000, gKv = 30, gKa = 0.06, gKca = 2.5, gKm = 2.2,
gCaT = 0.0003.

• Dendrites: gNa = 40, gKv = 30, gKa = 0.03, gKca = 2.5, gKm = 0.05,
gCaT = 0.0003.

1 The biophysical pyramidal neuron model is available at https://senselab.med.
yale.edu/ModelDB/ShowModel.cshtml?model=108459.
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