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a  b  s  t  r  a  c  t

Frequency  and  phase  of neural  activity  play  important  roles  in the  behaving  brain.  The  emerging  under-
standing  of  these  roles  has  been  informed  by  the  design  of analog  devices  that  have  been  important  to
neuroscience,  among  them  the  neuroanalog  computer  developed  by  O.  Schmitt  and  A. Hodgkin  in the
1930s.  Later  J.  von  Neumann,  in  a search  for high  performance  computing  using  microwaves,  invented
a  logic  machine  based  on  crystal  diodes  that  can perform  logic  functions  including  binary  arithmetic.
Described  here  is  an  embodiment  of his  machine  using  nano-magnetics.  Electrical  currents  through  point
contacts  on  a  ferromagnetic  thin film  can create  oscillations  in the magnetization  of  the  film.  Under  natu-
ral  conditions  these  properties  of a ferromagnetic  thin  film  may  be described  by a  nonlinear  Schrödinger
equation  for  the  film’s  magnetization.  Radiating  solutions  of this  system  are  referred  to as spin  waves,
and  communication  within  the  film  may  be by spin  waves  or  by  directed  graphs  of electrical  connections.
It  is shown  here  how  to  formulate  a STO  logic  machine,  and  by  computer  simulation  how  this machine
can  perform  several  computations  simultaneously  using  multiplexing  of inputs,  that  this  system  can
evaluate  iterated  logic  functions,  and that  spin  waves  may  communicate  frequency,  phase  and binary
information.  Neural  tissue  and  the  Schmitt-Hodgkin,  von  Neumann  and  STO  devices  share  a  common
bifurcation  structure,  although  these  systems  operate  on  vastly  different  space  and  time  scales;  namely,
all  may  exhibit  Andronov-Hopf  bifurcations.  This  suggests  that  neural  circuits  may  be  capable  of  the
computational  functionality  as described  by  von  Neumann.

©  2015 Published  by  Elsevier  Ireland  Ltd.

The importance of frequency and phase in neuroscience has
been acknowledged in many studies (e.g., see Izhikevich et al.,
2003; Nunez, 1995; Izhikevich, 2007; Encyclopedia, 2015), for
further references). Models for observed or speculated neural
phenomena are often formulated in terms of nonlinear oscillators
that describe electromagnetic, biochemical or mechanical pro-
cesses, including the neuroanalog computer of O. Schmitt and A.
Hodgkin in the 1930s, the van der Pol discharge tube models,
the Hodgkin-Huxley model of nerve membranes and its heuris-
tics, including the FitzHugh-Nagumo and Morris-Lecar models,
and various forms of voltage controlled oscillator neuron mod-
els (VCON) (Hoppensteadt, 2013). Conversely there have been
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important contributions from neuroscience to engineering, such
as the Schmitt trigger. Mathematics is a common thread in these
multi-disciplinary studies. In particular all of these oscillators can
exhibit a similar bifurcation structure, as does the spintronic model
presented here.

The motivation for this paper is two-fold. First, it describes an
embodiment of von Neumann’s invention (von Neumann, 1957)
based on our work on spin-torque systems (Maciá et al., 2011), and
it demonstrates some of its functionality. Second, it makes a con-
nection between spintronics and brain science through a common
bifurcation structure shared by STO and the models from neuro-
science listed earlier. While the brain operates on space scales of
millimeters and time scales of milliseconds, STO arrays operate
on space scales of nanometers and time scales of picoseconds. In
particular, such arrays may  provide brain-like functions on much
smaller and faster scales than those in a behaving brain. However,
this article is about physical devices that have been studied in Maciá
et al. (2011) and elsewhere, and it is not about the brain. It is not
clear how the results here might be interpreted in the context of
the brain, nor how magnetic behavior in the brain might occur or
what its functions might be. But, there are magnetic elements in the
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brain, so spin waves or their kin may  be present. The spin torque
phenomena discussed here have been discovered and developed
by physicists only recently (see references to this development
in Maciá et al. (2011)), and only in 2015 have spin waves been
observed (Bonetti et al., n.d.).

There have been many applications and extensions of von Neu-
mann’s approach to embedding binary information in the phase
of signals using parametrons, MEMS,  lasers, Josephson junctions
and STO, for example by Goto (1955), Wigington (1959), Mahboob
(2008) and Roychowdhury (2014). The novelty here is in demon-
strating through simulation that a single STO may  perform several
logic computations in parallel through multiplexing, that iterated
logic statements may  be evaluated by an array of STO, and that
aggregations of them may  transmit and process digital information
by means of spin waves.

Section 1 describes von Neumann’s invention (von Neumann,
1957) showing how binary arithmetic might be performed by
microwave oscillator systems. Section 2 presents simulations
showing a single STO can perform simple logic computations, how
an array of them can evaluate iterated logic functions, how a sin-
gle one can perform several separate computations simultaneously
by multiplexing of inputs, and how spin waves may  transmit and
process information about amplitude, frequency and phase. Other
applications of this methodology, not shown here, are to switching
and control.

As shown here, parametrically driven oscillator systems
containing an Andronov-Hopf bifurcation, including STO and
those from neuroscience, may  perform logic computations and
processing of information. Since bursts of action potentials are
known to carry amplitude, phase and frequency information (e.g.,
see Izhikevich et al., 2003; Nunez, 1995), it is possible to specu-
late that neural circuits may  use bursts or other action potential
phenomena as mechanisms for performing and communicating
logic computations on the space and time scales of neural activity.

The Andronov-Hopf (AH) bifurcation structure is important
for the phenomena described here since it appears naturally in
Landau-Lifshitz equations. Recall that a canonical model for an AH
bifurcation is the ordinary differential equation

dz

dt
= j ωz + (� − |z|2)z (1)

for a complex function z(t) where ω is the center frequency, � is
the amplification rate and j2 = −1. If � < 0, then |z| → 0 as t→ ∞.  If
� > 0 and if z(0) /= 0, then z approaches an oscillation; namely, z →√

� exp(j ωt + �) as t→ ∞ where the phase deviation � is deter-
mined by z’s initial value. The value � = 0 is the bifurcation point
for this system. In our case, we replace � by � + C(t) where � < 0
and C represents external parametric forcing, so when C(t) > − �,
|u| grows until C(t) returns to C(t) < − �. In particular, the system
exhibits bifurcation behavior at these junctures. Other bifurcation
structures, such as the saddle-node on invariant circle bifurcation
(SNIC), may  exhibit similar functionality, but we focus on AH here.
Parametric forcing of oscillators has been extensively studied in the
nonlinear oscillator, physics, neuroscience and engineering litera-
tures.

1. Formal logic and binary arithmetic

The basis of arithmetic in computers is performing addition of
binary numbers bit by bit, while keeping track of carry-over. Binary
addition may  be accomplished using logic gates that are electronic
embodiments of the basic operations from formal mathematical
logic of OR, AND and NAND. These may  be combined to perform
all arithmetic operations using NAND logic. In the following, the
symbols a and b may  be used as generic logical entities; they may
be binary digits, sets, signals, or represent other relevant concepts.

Disjunction is calculating a OR b, which is written as a ∨ b . Con-
junction is calculating a AND b, which is written as a ∧ b . NAND
calculates the negation of a AND b, which is written as a ∧̄ b =
¬(a ∧ b), where ¬ denotes negation. Note that in NAND logic, the
logic function NOT may  be calculated using the fact that ¬a = a ∧̄ a.
All of these operations are defined by truth tables.

The sum of the two binary digits a, b (i.e., 0 or 1), may  be accom-
plished using the Exclusive OR logic function, XOR(a, b), which may
be expressed in NAND logic. This is discussed in Section 2.2.

1.1. Binary digits as continuous waveforms and truth tables

The digit 1 is represented here by the signal

p(ωpt) ≡ Ap cos(2�ωpt + �) (2)

for some given amplitude Ap, phase deviation � and fre-
quency ωp, and the digit 0 is represented by the signal
n(ωpt) ≡ Ap cos(2�ωpt + � ± �) = − p(ωpt) . von Neumann (1957)
showed how logic statements may  be calculated using various
superpositions of these signals along with nonlinear circuitry.

Encoding a binary digit a in terms of phase variables is done
using the formulas

A = − cos a� and a = 1 − arccos(A)/�,

where A = +1 if a = 1 and A = −1 if a = 0. Then, for example, if A = 1,
AAp cos(ωpt) = p(ωpt), which represents the binary digit 1, and if
A = −1, AAp cos(ωpt) = n(ωpt), which represents the binary digit 0.

We write L(A, B) to represent a logic function operating on binary
digits (a, b) where A = − cos a�, B = − cos b�. In particular,

a ∨ b : L∨(A, B) = sign(1 + A + B)

a ∧ b : L∧(A, B) = sign(−1 + A + B)

a ∧̄ b : L∧̄(A, B) = sign(1 − 2A − 2B).

Since there is an odd number of terms in each case, these nonlinear
functions have the value ±1, and they produce the correct truth
tables for OR, AND, and NAND:

a b a ∨ b a ∧ b a ∧̄b A B L∨ L∧ L∧̄

0 0 0 0 1 −1 −1 −1 −1 +1

1 0 1 0 1 +1 −1 +1 −1 +1

0 1 1 0 1 −1 +1 +1 −1 +1

1 1 1 1 0 +1 +1 +1 +1 −1

1.2. Computation of logic functions

Disjunction involves combining two inputs ı1(t), ı2(t), where the
possible inputs are ıj(t) = p(ωpt) or n(ωpt) for j = 1, 2. The function

p(ωpt)L∨(A, B)

gives the equivalent of ı1(t) ∨ ı2(t). The output is proportional to p
if and only if at least one of the input digits is 1.

Conjunction is similar. It combines two inputs ı1(t), ı2(t) as

p(ωpt)L∧(A, B),

which gives the equivalent of ı1(t) ∧ ı2(t). The output is propor-
tional to p if and only if both the input digits are 1.

NAND combines the inputs as

p(ωpt)L∧̄(A, B),

which gives the equivalent of ı1(t) ∧̄ ı2(t). The output is propor-
tional to p if and only if at least one of the input digits is 0.
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