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A B S T R A C T

It is well known that in contrast to the Prisoner’s Dilemma, the snowdrift game can lead to a stable
coexistence of cooperators and cheaters. Recent theoretical evidence on the snowdrift game suggests
that gradual evolution for individuals choosing to contribute in continuous degrees can result in the
social diversification to a 100% contribution and 0% contribution through so-called evolutionary
branching. Until now, however, game-theoretical studies have shed little light on the evolutionary
dynamics and consequences of the loss of diversity in strategy. Here, we analyze continuous snowdrift
games with quadratic payoff functions in dimorphic populations. Subsequently, conditions are clarified
under which gradual evolution can lead a population consisting of those with 100% contribution and
those with 0% contribution to merge into one species with an intermediate contribution level. The key
finding is that the continuous snowdrift game is more likely to lead to assimilation of different
cooperation levels rather than maintenance of diversity. Importantly, this implies that allowing the
gradual evolution of cooperative behavior can facilitate social inequity aversion in joint ventures that
otherwise could cause conflicts that are based on commonly accepted notions of fairness.
ã 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In daily life, cooperative behavior in joint ventures is a
fundamental index that represents the real state of human
sociality and is often a matter of degree that can continuously
vary and diverge within a wide range. In general, understanding
the origin and dynamics of diversity or heterogeneity has been one
of themost challenging hot topics in biology and the social sciences
(Axelrod, 1997; McCann, 2000; Valori et al., 2012). However, most
traditional game-theoretical studies on cooperation have de-
scribed the degree of cooperation in terms of discrete strategies,
such as cooperators who contribute all and cheaters who do
nothing. Comparedwithmatrix games for finite discrete strategies,
games for infinite continuous strategies have been relatively little
studied (Brännström et al., 2011; Cressman et al., 2012; Le Galliard
et al., 2005; Hilbe et al., 2013; Killingback and Doebeli, 2002;
Killingback et al., 1999; McNamara et al., 2008; Nakamaru and
Dieckmann, 2009; Roberts and Sherratt, 1998,b; Wahl and Nowak,

1999a,b). We should note that a common motivation among
previous game-theoretical models with continuous strategies was
to resolve the fundamental question, “How altruistic should one
be?” (Roberts and Sherratt, 1998).

Crucially, in the last decade it has been clarified that even
without specific assortment, very small, occasional mutations on
the degree of cooperation can lead subpopulations of the
cooperators and cheaters to gradually dissimilate each other out
of a uniform population (“evolutionary branching”) (Brännström
and Dieckmann, 2005; Brown and Vincent, 2014; Doebeli et al.,
2004; Parvinen, 2010). This divergence scenario for the coopera-
tion level has been termed the “tragedy of the commune” (Doebeli
et al., 2004). Gradual evolution can favor such a state in which a
sense of fairnessmay beminimized, rather than a state inwhich all
adopt the same cooperation level. To date, theoretical and
numerical investigations have shown the conditions under which
evolutionary branching occurs at the cooperation level, and by also
considering ecological dynamics, where even extinction at the
population level can follow (Parvinen, 2010, 2011).

Importantly, previous studies implicitly indicated that a
heterogeneous population of cooperators and cheaters may be
unstable when considering a small mutation (Brown and Vincent,
2014; Doebeli et al., 2004 Doebeli et al., 2004). To the best of our

* Corresponding author at: Faculty of Mathematics, University of Vienna, Oskar-
Morgenstern-Platz 1, 1090 Vienna, Austria. Tel.: +43 1 4277 50774.

E-mail address: tatsuya.sasaki@univie.ac.at (T. Sasaki).

http://dx.doi.org/10.1016/j.biosystems.2015.04.002
0303-2647/ã 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

BioSystems 131 (2015) 51–59

Contents lists available at ScienceDirect

BioSystems

journal homepage: www.elsevier .com/ locate /b iosystems

http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2015.04.002&domain=pdf
mailto:tatsuya.sasaki@univie.ac.at
http://dx.doi.org/10.1016/j.biosystems.2015.04.002
http://dx.doi.org/10.1016/j.biosystems.2015.04.002
http://www.sciencedirect.com/science/journal/03032647
www.elsevier.com/locate/biosystems


knowledge, this issue has never been seriously tackled, despite the
fact that the coexistence of cooperators and cheaters is one of most
elementary equilibria in classical 2�2 matrix games as described
in Eq. (1) and is also common in nature and human societies.
Indeed, little is known about how continuous investment in joint
ventures affects what the traditional framework of a two-person
symmetric game with two strategies has so far predicted (Doebeli
et al., 2013; Shutters, 2013; Tanimoto, 2007;W. Zhong et al., 2012).

To address this issue, we consider the snowdrift game (Chen
and Wang, 2010; Doebeli and Hauert, 2005; Gore et al., 2009;
Hauert and Doebeli, 2004; Kun et al., 2006; Maynard Smith, 1982;
Sugden, 1986), which has traditionally been a mathematical
metaphor to understand the evolution of cooperation, and in
particular, it can result in the coexistence of cooperation and
cheating or inter-species mutualism (Fujita et al., 2014; Gore et al.,
2009; Kun et al., 2006). (The snowdrift game is also well
recognized as the chicken or hawk-dove game (Maynard Smith,
1982)). The classical snowdrift game for cooperators and cheaters
has been featured by the rank ordering of the four payoff values:
T >R > S > P (Doebeli and Hauert, 2005; Sugden, 1986), which are
given in the 2�2 payoff matrix for cooperation (C) and cheating
(or defection) (D),

C D
C
D

R S
T P

� �
: (1)

We note that if P and S have the other order: P > S, then this matrix
represents the well-known Prisoner’s Dilemma, leading to mutual
cheating (D–D) (Axelrod and Hamilton, 1981). The rank ordering
for the snowdrift game indicates that when starting with the D–D
state where both cheat, for one cheater to switch to cooperation is
beneficial to both, yet not so is then for the other to switch to
cooperation. The following situation may be useful as an example:
the front porch of an apartment has been covered by a snowdrift,
such that getting out requires someone to shovel the snowdrift.
The situation becomes a sort of snowdrift game if a resident is
willing to shovel snow and how much snow (C), and a best
response for the other resident(s) is to shovel less (or nothing) (D).
Considering that shoveling time and effort can vary continuously,
this would naturally evoke a question of “How much would high-
and low-contributors differ from each other in the snowdrift
game?”

In Section 2, we extend the discrete snowdrift game to
continuous cooperation. Fig.1 presents an overview encompassing

evolutionary scenarios in the classical and continuous snowdrift
games. In Section 3, we then investigate the gradual evolution of
cooperationwith small mutations. In the continuous extensionwe
consider quadratic payoff functions for interpolating these four
payoff values in Eq. (1). It is known that the continuousmodel with
quadratic payoff functions is at minimum, required for full
coverage of basic adaptive dynamics for a population monomor-
phic with the same level of cooperation (Brown and Vincent, 2008;
Doebeli et al., 2004) (see also (Boza and Számadó, 2010; Chen et al.,
2012; Zhang et al., 2013) for effects of more generalized payoff
functions).We show that adaptive dynamics in the snowdrift game
analytically provides a solution whether a population is mono-
morphic or dimorphic. Finally, in Section 4 we provide a summary
and discuss the model, results, and future work.

2. Models and methods

2.1. Replicator dynamics for cooperators and cheaters

We consider the 2�2 matrix game in Eq. (1) in infinitely large
populations without any assortment.We denote by PC(n) and PD(n)
the expected payoffs for a cooperator (C) and cheater (D),
respectively, in the population with the frequency of cooperators
n. Clearly,

PCðnÞ ¼ nRþ ð1� nÞS;
PDðnÞ ¼ nT þ ð1� nÞP:

(2)

we analyze the replicator equation for the frequency of cooperators
n (Cressman and Tao, 2014; Hofbauer and Sigmund, 1998),

dn
dt

¼ nðPCðnÞ � PðnÞÞ; (3)

where PðnÞ ¼ nPCðnÞ þ ð1� nÞPDðnÞ denotes the average payoff
over the population. Eq. (3) can be rewritten as

dn
dt

¼ nð1� nÞðPCðnÞ � PDðnÞÞ

¼ nð1� nÞ½nðR� TÞ þ ð1� nÞðS� PÞ�:
(4)

Therefore, the replicator dynamics in the 2�2 matrix game in
Eq. (1) are classified into four types by the sign combination of S� P
and R�T (Table 1 and Fig. 2(x)) (Lambert et al., 2014; Santos et al.,
2012; Shutters, 2013). In particular, if and only if S�P >0 and
R� T<0 hold, the dynamics have a stable interior equilibriumwith
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Fig. 1. Evolution of cooperation in snowdrift games. For discrete strategies, on the one hand, the evolution of the strategy frequencies can lead to the coexistence of
cooperators and cheaters (upper arrows, X0 to B and X1 to B), yet do not help in understanding whether or not the resultant mixture is stable against continuously small
mutations. For continuous strategies, on the other hand, the population converges to an intermediate level of cooperation (lower arrows, X0 to A and X1 to A) and can further
undergo evolutionary branching (vertical arrow, A to B). In this case, the population splits into diverging clusters across an evolutionary-branching point x ¼ x̂ and eventually
evolves to an evolutionarily stable mixture of full- and non-contributors (B). Otherwise, it is possible that a point where x ¼ x̂ has already become evolutionarily
stable. In this case, the initially dimorphic population across a point x ¼ x̂ can be evolutionarily unstable, and thus the population will approach each other and
finally merge into one cluster at the point (“evolutionary merging”; vertical arrow, B to A).
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