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a b s t r a c t

This paper concerns developing a numerical method of the Newton type to solve systems
of nonlinear equations described by nonsmooth continuous functions. We propose and
justify a new generalized Newton algorithm based on graphical derivatives, which have
never been used to derive a Newton-type method for solving nonsmooth equations.
Based on advanced techniques of variational analysis and generalized differentiation,
we establish the well-posedness of the algorithm, its local superlinear convergence, and
its global convergence of the Kantorovich type. Our convergence results hold with no
semismoothness and Lipschitzian assumptions, which is illustrated by examples. The
algorithm and main results obtained in the paper are compared with well-recognized
semismooth and B-differentiable versions of Newton’smethod for nonsmooth Lipschitzian
equations.
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1. Introduction

Newton’s method is one of the most powerful and useful methods in optimization and in the related area of solving
systems of nonlinear equations

H(x) = 0 (1.1)

defined by continuous vector-valued mappings H:Rn
→ Rn. In the classical setting when H is a continuously differentiable

(smooth, C1) mapping, Newton’s method builds the following iteration procedure

xk+1 := xk + dk for all k = 0, 1, 2, . . . , (1.2)

where x0 ∈ Rn is a given starting point, and where dk ∈ Rn is a solution to the linear system of equations (often called
‘‘Newton equation’’)

H ′(xk)d = −H(xk). (1.3)

A detailed analysis and numerous applications of the classical Newton’s method (1.2), (1.3) and its modifications can be
found, e.g., in the books [1–3] and the references therein.

However, in the vastmajority of applications – including those to optimization, variational inequalities, complementarity
and equilibrium problems – the underlying mapping H in (1.1) is nonsmooth. Indeed, the aforementioned optimization-
related models and their extensions can be written via Robinson’s formalism of ‘‘generalized equations’’, which in turn can
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be reduced to standard equations of the form above (using, e.g., the projection operator) but with intrinsically nonsmooth
mappings H; see [4–7] for more details, discussions, and references.

Robinson originally proposed (see [8] and also [9] based on his earlier preprint) a point-based approximation approach
to solve nonsmooth equations (1.1), which then was developed by his student Josephy [10] to extend Newton’s method for
solving variational inequalities and complementarity problems. Other approaches replace the classical derivative H ′(xk) in
the Newton equation (1.3) by some generalized derivatives. In particular, the B-differentiable Newton method developed
by Pang [11,12] uses the iteration scheme (1.2) with dk being a solution to the subproblem

H ′(xk; d) = −H(xk), (1.4)

where H ′(xk; d) denotes the classical directional derivative of H at xk in the direction d. Besides the existence of the classical
directional derivative in (1.4), a number of strong assumptions are imposed in [11,12] to establish appropriate convergence
results; see Section 5 below for more discussions and comparisons.

In another approach developed by Kummer [13] and Qi and Sun [14], the direction dk in (1.2) is taken as a solution to the
linear system of equations

Akd = −H(xk), (1.5)

where Ak is an element of Clarke’s generalized Jacobian ∂CH(xk) of a Lipschitz continuous mapping H . In [15], Qi suggested
to replace Ak ∈ ∂CH(xk) in (1.5) by the choice of Ak from the so-called B-subdifferential ∂BH(xk) of H at xk, which is a proper
subset of ∂CH(xk); see Section 4 for more details. We also refer the reader to [4,16,9] and bibliographies therein for wide
overviews, historical remarks, and other developments on Newton’s method for nonsmooth Lipschitz equations as in (1.1)
and to [17] for some recent applications.

It is proved in [14] and [15] that the Newton-type method based on implementing the generalized Jacobian and
B-subdifferential in (1.5), respectively, superlinearly converges to a solution of (1.1) for a class of semismooth mappings
H; see Section 4 for the definition and discussions. This subclass of Lipschitz continuous and directionally differentiable
mappings is rather broad and useful in applications to optimization-related problems. However, not every mapping arising
in applications (from both theoretical and practical viewpoints) is either directionally differentiable or Lipschitz continuous.
The reader can find valuable classes of functions and mappings of this type in [18,19] and overwhelmingly in spectral
function analysis, eigenvalue optimization, studying of roots of polynomials, stability of control systems, etc.; see, e.g., [20]
and the references therein.

The main goal and achievements of this paper are as follows. We propose a new Newton-type algorithm to solve
nonsmooth equations (1.1) described by general continuous mappings H that is based on graphical derivatives. It reduces to
the classical Newton method (1.3) when H is smooth, being different from previously known versions of Newton’s method
in the case of Lipschitz continuous mappings H . Based on advanced tools of variational analysis involving metric regularity
and coderivatives, we justify well-posedness of the new algorithm and its superlinear local and global (of the Kantorovich
type) convergence under verifiable assumptions that hold for semismoothmappings but are not restricted to them. Detailed
comparisons of our algorithm and results with the semismooth and B-differentiable Newton methods are given and certain
improvements of these methods are justified.

Note metric regularity and related concepts of variational analysis has been employed in the analysis and justification of
numerical algorithms startingwith Robinson’s seminal contribution; see, e.g., [21–23] and their references. However, we are
not familiar with efficient applications of graphical derivatives and coderivatives for these purposes although the contingent
derivative can be included in the general scheme of [16, Chapter 10] developed under a different set of assumptions with
no involving metric regularity.

The rest of the paper is organized as follows. In Section 2 we present basic definitions and preliminaries from variational
analysis and generalized differentiation widely used for formulations and proofs of the main results.

Section 3 is devoted to the description of the new generalized Newton algorithm with justifying its well-
posedness/solvability and establishing its superlinear local and global convergence under appropriate assumptions on the
underlying mapping H .

In Section 4 we compare our algorithm with the scheme of (1.5). We also discuss in detail the major assumptions made
in Section 3 deriving sufficient conditions for their fulfillment and comparing them with those in the semismooth Newton
methods.

Section 5 contains applications of our algorithm to the B-differentiable Newton method (1.4) with largely relaxed
assumptions in comparison with known ones. In Section 6 we give some concluding remarks and discussions on further
research.

Our notation is basically standard in variational analysis and numerical optimization; cf. [4,18,19]. Recall that, given a
set-valued mapping F :Rn Rm, the expression

Lim supx→x̄ F(x) := {y ∈ Rm
|∃ xk → x̄ and yk → y as k→∞ with

yk ∈ F(xk) for all k ∈ N := {1, 2, . . .}} (1.6)

defines the Painlevé–Kuratowski upper/outer limit of F as x → x̄. Let us also mention that the symbols coneΩ and coΩ

stand, respectively, for the conic hull and convex hull of the set in question, that dist(x;Ω) denotes the Euclidean distance
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