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a  b  s  t  r  a  c  t

The  significant  role of  epigenetic  mechanisms  within  natural  systems  has  become  increasingly  clear.  This
paper  uses  a recently  presented  abstract,  tunable  Boolean  genetic  regulatory  network  model  to  explore
aspects  of  epigenetics.  It is  shown  how  dynamically  controlling  transcription  via  a  DNA methylation-
inspired  mechanism  can  be selected  for  by simulated  evolution  under  various  single  and  multicellular
scenarios.  Further,  it is  shown  that the  effects  of  such  control  can  be inherited  without  detriment  to
fitness.
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1. Introduction

Epigenetics refers to cellular mechanisms that affect transcrip-
tion without altering DNA sequences, e.g., see (Bird, 2007) for an
overview. The two principal mechanisms are DNA methylation and
histone modification. In the former case, a methyl group attaches to
the base cytosine, or adenine in bacteria, typically causing a reduc-
tion in transcription activity in the area. In the latter case, changes
in the shape of the proteins around which DNA wraps itself to form
chromatin can alter the level of transcription in the area. In both
cases, the change can be inherited.

With the aim of enabling the systematic exploration of artifi-
cial genetic regulatory network models (GRN), a simple approach
to combining them with abstract fitness landscapes has recently
been presented (Bull, 2012). More specifically, random Boolean
networks (RBN) (Kauffman, 1969) were combined with the NK
model of fitness landscapes (Kauffman and Levin, 1987). In the
combined form – termed the RBNK model – a simple relationship
between the states of N randomly assigned nodes within an RBN
is assumed such that their value is used within a given NK fitness
landscape of trait dependencies. The approach was also extended
to enable consideration of multicellular scenarios using the related
NKCS landscapes (Kauffman and Johnsen, 1992) – termed the
RBNKCS model.

In this paper, RBNs are extended to include a simple form of epi-
genetic control. The selective advantage of the new mechanism is
explored under various single and multicellular scenarios. Results
indicate epigenetics is useful across a wide range of conditions.
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The paper is arranged are follows: the next section briefly reviews
related work in the area and introduces the two basic models; Sec-
tion 3 examines the extended RBNK model; and, Section 4 examines
the extended RBNKCS model. Finally, all findings are discussed.

2. Background

2.1. Epigenetic computing

Whilst there is a growing body of work using artificial GRN
within bio-inspired computing (e.g., see (Bull, 2012) for an
overview), there are very few examples which consider epigenetic
mechanisms explicitly. Note this is not the same as epigenetic
robotics (e.g., see (Asada et al., 2009)). Tanav and Yuta (2003)
included a histone modification-inspired scheme into a two-cell,
rule-based representation where a development phase repeatedly
alters one of the two  cells. Periyasamy et al. (2008) presented
an approach in which each individual in the evolving population
is essentially viewed as a protein interacting with other proteins
based upon various external and internal conditions, an architec-
ture reminiscent of the Learning Classifier System (Holland, 1976).
Turner et al. (2013) have recently augmented a GRN model with
an epigenetic layer in the form of a set of binary masks over the
genes, one mask per objective faced by the system: for a given task,
the subset of genes defined in the corresponding mask are used to
build the GRN. In this paper, a simple, abstract epigenetic mecha-
nism is introduced into a well-known artificial GRN model which
is an on-going, context dependent control process during the cell
lifecycle.

It can be noted that, following (Maynard-Smith, 1990), a grow-
ing number of formal models of epigenetic mechanisms exist of
natural systems (e.g., see (Geoghegan and Spencer, 2013)). A review
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Fig. 1. Example traditional RBN (left) and NK (right) models. Both contain three genes mutually connected, with the state-transition/fitness-contribution table shown for
one  gene in each case.

of that literature is beyond the scope of this paper and the reader
is referred to (Jablonka and Lamb, 2005) for an introduction.

2.2. The RBNK model

Within the traditional form of RBN, a network of R nodes, each
with a randomly assigned Boolean update function and B directed
connections randomly assigned from other nodes in the network,
all update synchronously based upon the current state of those B
nodes (Fig. 1). Hence those B nodes are seen to have a regulatory
effect upon the given node, specified by the given Boolean func-
tion attributed to it. Since they have a finite number of possible
states and they are deterministic, such networks eventually fall into
an attractor. It is well-established that the value of B affects the
emergent behaviour of RBN wherein attractors typically contain
an increasing number of states with increasing B (see (Kauffman,
1993) for an overview). Three regimes of behaviour exist: ordered
when B = 1, with attractors consisting of one or a few states; chaotic
when B ≥ 3, with a very large number of states per attractor; and,
a critical regime around B = 2, where similar states lie on trajecto-
ries that tend to neither diverge nor converge (see (Derrida and
Pomeau, 1986) for formal analysis). Note that traditionally the size
of an RBN is labeled N, as opposed to R here, and the degree of node
connectivity labeled K, as opposed to B here. The change is adopted
due to the traditional use of the labels N and K in the NK model
of fitness landscapes which are also used in this paper, as will be
shown.

Kauffman and Levin (1987) introduced the NK model to allow
the systematic study of various aspects of fitness landscapes (see
(Kauffman, 1993) for an overview). In the standard NK model an
individual is represented by a set of N (binary) genes or traits, each
of which depends upon its own value and that of K randomly cho-
sen others in the individual (Fig. 1). Thus increasing K, with respect
to N, increases the epistasis. This increases the ruggedness of the
fitness landscapes by increasing the number of fitness peaks. The
NK model assumes all epistatic interactions are so complex that it is
only appropriate to assign (uniform) random values to their effects

Fig. 2. Example RBNK model with an equal number of input and output nodes.
Dashed lines and nodes indicate where the NK fitness landscape is embedded into
the  RBN model (refer to Fig. 1).

on fitness. Therefore for each of the possible K interactions, a table
of 2(K+1) fitnesses is created, with all entries in the range 0.0–1.0,
such that there is one fitness value for each combination of traits.
The fitness contribution of each trait is found from its individual
table. These fitnesses are then summed and normalised by N to give
the selective fitness of the individual. Exhaustive search of NK land-
scapes (Smith and Smith, 1999) suggests three general classes exist:
unimodal when K = 0; uncorrelated, multi-peaked when K > 3; and,
a critical regime around 0 < K < 4, where multiple peaks are corre-
lated.

As shown in Fig. 2, in the RBNK model N nodes (where R≤N<0)
in the RBN are chosen as “outputs”, i.e., their state determines fit-
ness using the NK model. The combination of the RBN and NK
model enables a systematic exploration of the relationship between
phenotypic traits and the genetic regulatory network by which
they are produced. It was  previously shown how achievable fit-
ness decreases with increasing B, how increasing N with respect to
R decreases achievable fitness, and how R can be decreased without
detriment to achievable fitness for low B (Bull, 2012). In this paper
N phenotypic traits are attributed to randomly chosen nodes within
the network of R genetic loci, with environmental inputs applied to
the first N′ loci (Figure 2); input nodes and trait/output nodes are
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