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a  b  s  t  r  a  c  t

In this  work  we investigate  a mathematical  model  describing  tumour  growth  under  a treatment  by
chemotherapy  that  incorporates  time-delay  related  to the  conversion  from  resting  to  hunting  cells.  We
study the  model  using  values  for the  parameters  according  to  experimental  results  and  vary  some  parame-
ters relevant  to the  treatment  of  cancer.  We  find  that  our  model  exhibits  a  dynamical  behaviour  associated
with  the  suppression  of  cancer  cells,  when  either  continuous  or pulsed  chemotherapy  is applied  accord-
ing to clinical  protocols,  for  a large  range  of  relevant  parameters.  When  the  chemotherapy  is successful,
the  predation  coefficient  of  the  chemotherapic  agent  acting  on cancer  cells varies  with  the  infusion  rate
of  chemotherapy  according  to  an  inverse  relation.  Finally,  our model  was  able  to reproduce  the exper-
imental  results  obtained  by  Michor  and collaborators  [Nature  435  (2005)  1267]  about  the  exponential
decline  of cancer  cells  when patients  are  treated  with  the  drug  glivec.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Cancer is the name given to a cluster of more than 100 diseases
that presents a common characteristic, the disorderly growth of
cells that invade tissues and organs (Anderson et al., 2001; Brú et al.,
2003). These cells may  spread to other parts of the body rapidly
forming tumours (Baserga, 1965).

An important mechanism of body defence against a disease
caused by a virus, bacteria or tumour is the destruction of infected
cells or tumours by actived cytotoxic T-lymphocytes (CTL) cells also
known as hunter lymphocytes. CTL are able to kill cells or to induce a
programmed cell death (apoptosis). The biological activation pro-
cess occurs efficiently when the CTL receive impulses generated
by T-helper cells (TH). The stimuli occur through the release of
cytokines. This phenomenon is not instantaneous; besides the time
elapsed to convert resting T-lymphocytes in CTL, there is also a nat-
ural delay of the cytological process (Wodarz et al., 1998; Iarosz
et al., 2011). Banerjee and Sarkar (2008) studied the dynamical
behaviour of tumour and immune cells using delay differential
equations. They observed the existence of oscillations in tumour
cells when a time delay was considered in the growth of T-cells.
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A possible way  to stop the growing of cancer cells is chemother-
apy. That is, the treatment with a drug or combination of drugs
through some protocol. There are many experimental and theo-
retical studies about the effects of the chemotherapy on the cells.
Moreover, mathematical models have been considered to simulate
the growth of cancer cells (Liu et al., 2012), as well as, tumour-
immune interactions with chemotherapy (De Pillis et al., 2007).

In this paper we investigate a mathematical model for the
growth of tumours that not only take into consideration the time
delay character of the lymphocytes dynamics, but also the effect
of the chemotherapy. We  extend the model of Banerjee and Sarkar
(2008) by adding the chemotherapy, and by considering some clin-
ically plausible protocols. Firstly, a continuous chemotherapy is
analysed. Secondly, the traditional or pulsed chemotherapy pro-
tocol is analysed, in which the drug is administered periodically.
According to experimental protocols, we have used both a con-
stant amplitude (Ahn and Park, 2011) and an oscillatory amplitude
(Kuebler et al., 2007) for the continuous infusion rate of chemother-
apy (Pinho et al., 2002).

One of our main results is to show that there are a large range
of relevant parameters that lead to a successful chemotherapy.
In a successful chemotherapy, the predation coefficient of the
chemotherapic agent acting on the cancer cells and the infusion
rate of the chemotherapy are inversely related. For the continu-
ous chemotherapy, we  have ensured the stability of the non-cancer
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Table 1
Parameters according to experimental evidence.

Parameter Definition Value References

q1 Growth rate of malignant tumour cells 0.18 day−1 Siu et al. (1986)
K1 Carrying capacity of tumour cells 5 × 106 cells Siu et al. (1986)
˛1 Decay rate of tumour cells by hunting cells 1.101 × 10−7 cells −1 day−1 Kuznetsov et al. (1994)
˛2 Decay rate of hunting cells by tumour cells 3.422 × 10−10 cells −1 day−1 Kuznetsov et al. (1994)
d1 Death rate of hunting cells 0.0412 day−1 Kuznetsov et al. (1994)
q2 Growth rate of resting cells 0.0245 day−1 Banerjee and Sarkar (2008)
� Time delay in conversion from resting cells to hunting cells 45.6 day Banerjee and Sarkar (2008)
K2 Carrying capacity of resting cells 1 × 107 cells Banerjee and Sarkar (2008)
ˇ1 Conversion rate from resting to hunting cells 6.2 × 10−9 cells−1 day−1 Kuznetsov et al. (1994)

state (i.e., a successful chemotherapy) by calculating the Lyapunov
exponents of the non-cancer solution. Finally, our model was able
to reproduce the experimental results obtained by Michor et al.
(2005) about the exponential decline of cancer cells when patients
are treated with the drug glivec.

2. The model

We  extend a mathematical model proposed by Sarkar and
Banerjee (2005) including the chemotherapic agent. The model is
based on the predator-prey system. The T-lymphocyte is the preda-
tor, while the tumour cell is the prey that is being attacked. The
predators can be in a hunting or a resting state. The resting cells
do not kill tumour cells, but they can become hunters. The acti-
vation occurs not only due to cytokines released by macrophages
that absorb tumour cells, but also by direct contact between resting
and tumour cells. As a result, the resting cells suffer a degradation
while the hunting cells are actived. The activated cells do not return
to the resting state. This way, the predator-prey model is a three
dimensional deterministic system, consisting of tumour cells, hunt-
ing cells, and resting cells. We  added the chemotherapic agent in
the equations as a predator on both cancerous and lymphocytes
cells. The time delay of about 60 days considered in our model was
observed by Balduzzi et al. (2005) and Villasana and Radunskaya
(2003), when they were realising experiments about lymphoblas-
tic leukaemia. It incorporates many different phenomena in the
system. It is one order of magnitude larger than the one observed
in Becker et al. (2010). In our model, the time delay represents the
total time interval for cancer cells to be identified by T-cell recep-
tors and transfer this information to the killer cells, and the time
related to the process of cytolytic information in the resting cells
(Becker et al., 2010; Matta et al., 2013). The model is then given by

dC(t)
dt

= q1C(t)
(

1 − C(t)
K1

)
− ˛1C(t)H(t) − p1C(t)

a1 + C(t)
Z(t),

dH(t)
dt

= ˇ1H(t)R(t − �) − d1H(t) − ˛2C(t)H(t) − p2H(t)
a2 + H(t)

Z(t),

dR(t)
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= q2R(t)
(
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dZ(t)
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= � −
(

� + g1C(t)
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+ g3R(t)
a3 + R(t)

)
Z(t),

(1)

where C, H and R are the number of cancerous, hunting and resting
cells, respectively, t is the time and Z is the concentration of the
chemotherapic agent. The cancerous and resting cells have a logis-
tic growth. The term −d1H(t) represents the natural death of the
hunting cells. The terms −˛1C(t)H(t) and ˛2C(t)H(t) are the losses
due to encounters between the cancerous and hunting cells. The
term ˇ1H(t)R(t − �) is associated with the conversion of resting to
hunting state, where � is the delay in the conversion. The terms

Table 2
Parameters according to the literature.

Parameter Definition References

pi Predation coefficients of chemotherapic agent
on cells (C, H, R)

Pinho et al. (2002)

ai Determine the rate at which C, H, R, in the
absence of competition and predation, reach
carrying capacities

Pinho et al. (2002)

gi Represent the combination rates of the
chemotherapic agent with the cells

Pinho et al. (2002)

� Represents the infusion rate of chemotherapy Pinho et al. (2002)
� Washout rate of chemotherapy Pinho et al. (2002)

with Z correspond to interaction of the chemotherapic agent with
the cells.

Table 1 shows the parameters obtained from the literature,
according to experimental evidence, and Table 2 shows the defini-
tion of some of the parameters. Table 3 presents the values that we
consider in our simulations for the sake of numerical integration.

Introducing the following dimensionless variables

t = t

day
, C = C

KT
, H = H

KT
,

R = R

KT
, Z = Z

�M �−1
,

(2)

where KT = K1 + K2 is the total carrying capacity and �M is equal
1 mg  m−2 day−1. Combining (2) with (1), and relabelling the vari-
ables {t, C, H, R, Z} as t, C, H, R, Z, respectively, and the parameters
{q1, K1, ˛1, p1, g1, a1, ˇ1, d1, ˛2, p2, g2, a2, q2, K2, p3, g3, a3, �, �}
as {q1, K1, ˛1, p1, g1, a1, ˇ1, d1, ˛2, p2, g2, a2, q2, K2, p3, g3, a3, �,  �},
respectively, we  obtain the same equations for C, H and R. However,
the equation for Z presents a small alteration,

dZ(t)
dt

= ��  −
(

� + g1C(t)
a1 + C(t)

+ g2H(t)
a2 + H(t)

+ g3R(t)
a3 + R(t)

)
Z(t), (3)

Table 3
Dimensionless parameters.

Parameter Value Parameter Value

q1 0.18 K1 1/3
˛1 1.6515 ˛2 5.133 × 10−3

d1 0.0412 q2 0.0245
�  45.6 K2 2/3
ˇ1 9.3 × 10−2 p1 1 × 10−3

p2 1 × 10−3 p3 1 × 10−3

a1 1 × 10−4 a2 1 × 10−4

a3 1 × 10−4 g1 0.1
g2 0.1 g3 0.1
�  0 – 104 � 0.2
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