Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On coderivatives and Lipschitzian properties of the dual pair in optimization

Marco A. López^{a,b,*,1}, Andrea B. Ridolfi^{c,2}, Virginia N. Vera de Serio^{d,2}

^a Department of Statistics and Operations Research, University of Alicante, Spain

^b Honorary Research Fellow in the Graduate School of Information Technology and Mathematical Sciences at University of Ballarat, Australia

ABSTRACT

^c CONICET; Faculty of Sciences Applied to Industry, National University of Cuyo, Mendoza, Argentina

^d Faculty of Economics and I.C.B., National University of Cuyo, Mendoza, Argentina

ARTICLE INFO

Communicated by Ravi Agarwal

MSC: 90C34 90C48 90C31 49J53 46A20 *Keywords:* Semi-infinite and infinite-dimensional programming Dual pair and duality theory Stability Lipschitz-like property and Lipschitz moduli Coderivative

1. Introduction

This paper deals with the following linear optimization problem

$$P: \quad \sup \quad \langle \overline{c}^*, x \rangle \\ \text{s.t.} \quad \begin{array}{l} \langle a_t^*, x \rangle \leq \overline{b}_t, \quad t \in T, \\ x \in Q, \end{array}$$
(1)

In this paper, we apply the concept of coderivative and other tools from the generalized

differentiation theory for set-valued mappings to study the stability of the feasible sets of both the primal and the dual problem in infinite-dimensional linear optimization with

infinitely many explicit constraints and an additional conic constraint. After providing

some specific duality results for our dual pair, we study the Lipschitz-like property of both

mappings and also give bounds for the associated Lipschitz moduli. The situation for the

© 2011 Elsevier Ltd. All rights reserved.

dual shows much more involved than the case of the primal problem.

where *T* is an arbitrary index set, possibly infinite, *Q* is a convex cone in a real Banach space *X*, \overline{c}^* and a_t^* , $t \in T$, belong to the topological dual of *X*, denoted by X^* , and \overline{b}_t , $t \in T$, are real numbers. *P* is an infinite-dimensional optimization problem with possibly infinitely many linear inequality constraints (depending on the cardinality of *T*).

^{*} Corresponding author at: Department of Statistics and Operations Research, University of Alicante, Spain.

E-mail addresses: marco.antonio@ua.es (M.A. López), abridolfi@gmail.com (A.B. Ridolfi), vvera@uncu.edu.ar (V.N. Vera de Serio).

¹ The research of this author has been partially supported by MICINN Grant MTM2008-06695-C03-01 from Spain, and by ARC Project DP110102011 from Australia.

 $^{^2}$ The research of these authors has been partially supported by SeCTyP-UNCUYO, Argentina.

Problems of this type have relevant applications in science and technology. A number of them are reported in [1,2], where the reader can find comprehensive overviews of infinite-dimensional and semi-infinite optimization, respectively. See also [3], which is confined to the so-called *continuous problem* (when the index set T is a compact Hausdorff space and the functions $t \mapsto a_t^*$ and $t \mapsto \overline{b}_t$ are continuous).

We assume that Q is closed and that the set $\{a^*, t \in T\} \subset X^*$ is fixed, arbitrary, and bounded for the dual norm in X^* defined by

$$||x^*|| := \sup \left\{ \langle x^*, x \rangle : ||x|| \le 1 \right\}.$$

(If no confusion arises, we use the same notation $\|\cdot\|$ for the given norm in X and the corresponding dual norm in X*.)

As a consequence of the boundedness assumption and the generalized Cauchy-Schwarz inequality, we have that, for every $x \in X$,

$$\langle a_{(.)}^*, x \rangle \in \ell_{\infty}(T),$$

where $\ell_{\infty}(T)$ is the real Banach space of all bounded functions on T with the supremum norm

$$p \in \ell_{\infty}(T) \rightarrow ||p||_{\infty} := \sup_{t \in T} |p_t|.$$

The subscript ∞ in the norm symbol will be omitted if no confusion arises. When the index set T is compact and the functions $a^*_{(.)}$ are continuous on T, we may substitute $\ell_{\infty}(T)$ by the space $\mathcal{C}(T)$ of continuous functions over a compact set.

By means of the linear mapping $A: X \to \ell_{\infty}(T)$ defined as $Ax := \langle a_{\ell_0}^*, x \rangle$, the problem *P* can be reformulated as

$$P: Sup \quad \langle \overline{c}^*, x \rangle$$

s.t.
$$\begin{array}{c} Ax \leq \overline{b}, \\ x \in Q. \end{array}$$
(2)

Here $\overline{b} = (\overline{b}_t)_{t \in T}$. Thanks to the boundedness of $\{a_t^*, t \in T\}$, the linear operator A is bounded, and so continuous, as

$$\|A\| = \sup_{\|x\| \le 1} \|Ax\| = \sup_{\|x\| \le 1} \sup_{t \in T} |\langle a_t^*, x \rangle| \le \sup_{\|x\| \le 1} \sup_{t \in T} \|a_t^*\| \|x\| = \sup_{t \in T} \|a_t^*\|$$

If X is reflexive, associated with each $t \in T$, there exists some $x_t \in X$ such that $||x_t|| = 1$ and satisfying $\langle a_t^*, x_t \rangle = ||a_t^*||$; this fact leads to $||A|| = \sup_{t \in T} ||a_t^*||$. The problem *P* is called *primal* as it has an associated *dual* problem *D* defined as follows:

$$D: \quad \begin{array}{ll} \inf & \langle \mu, \overline{b} \rangle \\ & & A^* \mu \in \overline{c}^* - Q^\circ, \\ & \text{s.t.} & \mu \ge 0, \end{array}$$

where $\mu \in \ell_{\infty}(T)^*, A^* : \ell_{\infty}(T)^* \to X^*$ is the adjoint operator of A, i.e.

 $\langle A^*\mu, x \rangle = \langle \mu, Ax \rangle$, for every $\mu \in \ell_{\infty}(T)^*$ and every $x \in X$,

and Q° is the dual cone of Q

$$Q^{\circ} := \{q^* \in X^* : \langle q^*, q \rangle \le 0 \text{ for all } q \in Q\}.$$

This dual problem falls in the duality model introduced by Kretschmer in [4] and it is developed here at an intermediate level of generality between the approaches in [5,6]. Anderson and Nash have given a detailed account of this theory in [1, Chapter 3]. In fact, our pair of dual problems P and D are particular instances of problems IP and IP* in [1, pp. 38 and 39], respectively. Here, A is a continuous linear mapping between X and $\ell_{\infty}(T)$ with respect to the norm topologies, but Proposition 5 in [1, p. 37] applies to guarantee that our dual pair falls in the model studied in the book [1, Section 3.3]. Actually, the theory in [1, Section 3.3] is built on a reflexive context (dual pairs of vector spaces), but the reflexivity is required only to guarantee that the dual of the dual problem IP*, i.e. IP**, is identical to IP. Therefore, the reflexivity assumption has no influence in the arguments used in the proofs when this second dual IP** is not involved.

The dual objects we study in the paper are the associated feasible sets

$$F_P := \left\{ x \in X : Ax \le \overline{b} \text{ and } x \in Q \right\},\$$

and

$$F_D := \left\{ \mu \in \ell_\infty(T)^* : A^* \mu \in \overline{c}^* - Q^\circ \text{ and } \mu \ge 0 \right\}$$

the optimal values

$$v_P := \sup_{x \in F_P} \langle \overline{c}^*, x \rangle$$
 and $v_D := \inf_{\mu \in F_D} \langle \mu, \overline{b} \rangle$,

Download English Version:

https://daneshyari.com/en/article/840740

Download Persian Version:

https://daneshyari.com/article/840740

Daneshyari.com