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ARTICLE INFO ABSTRACT

In this paper, we apply the concept of coderivative and other tools from the generalized
Communicated by Ravi Agarwal differentiation theory for set-valued mappings to study the stability of the feasible sets
of both the primal and the dual problem in infinite-dimensional linear optimization with
infinitely many explicit constraints and an additional conic constraint. After providing
90C34 . . . . . .
00C48 some specific duality results for our dual pair, we study the Lipschitz-like property of both
90C31 mappings and also give bounds for the associated Lipschitz moduli. The situation for the
49]53 dual shows much more involved than the case of the primal problem.
46A20 © 2011 Elsevier Ltd. All rights reserved.

MSC:

Keywords:

Semi-infinite and infinite-dimensional
programming

Dual pair and duality theory

Stability

Lipschitz-like property and Lipschitz
moduli

Coderivative

1. Introduction

This paper deals with the following linear optimization problem

P: Sup (c".x)
(af,x) <b;, teT, (M

S.t.
x€Q,

where T is an arbitrary index set, possibly infinite, Q is a convex cone in a real Banach space X, ¢* and a}, ¢ € T, belong to

the topological dual of X, denoted by X*, and b, t € T, are real numbers. P is an infinite-dimensional optimization problem
with possibly infinitely many linear inequality constraints (depending on the cardinality of T).

* Corresponding author at: Department of Statistics and Operations Research, University of Alicante, Spain.
E-mail addresses: marco.antonio@ua.es (M.A. Lopez), abridolfi@gmail.com (A.B. Ridolfi), vwvera@uncu.edu.ar (V.N. Vera de Serio).
1 The research of this author has been partially supported by MICINN Grant MTM2008-06695-C03-01 from Spain, and by ARC Project DP110102011
from Australia.
2 The research of these authors has been partially supported by SeCTyP-UNCUYO, Argentina.

0362-546X/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2011.06.036


http://dx.doi.org/10.1016/j.na.2011.06.036
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:marco.antonio@ua.es
mailto:abridolfi@gmail.com
mailto:vvera@uncu.edu.ar
http://dx.doi.org/10.1016/j.na.2011.06.036

1462 M.A. Lopez et al. / Nonlinear Analysis 75 (2012) 1461-1482

Problems of this type have relevant applications in science and technology. A number of them are reported in [1,2], where
the reader can find comprehensive overviews of infinite-dimensional and semi-infinite optimization, respectively. See also [3],
which is confined to the so-called continuous problem (when the index set T is a compact Hausdorff space and the functions
t — af and t — b, are continuous).

We assume that Q is closed and that the set {af, t € T} C X* is fixed, arbitrary, and bounded for the dual norm in X*
defined by

X[l == sup { (x*, %) : x| < 1} .

(If no confusion arises, we use the same notation || - || for the given norm in X and the corresponding dual norm in X*.)
As a consequence of the boundedness assumption and the generalized Cauchy-Schwarz inequality, we have that, for
every x € X,

(afy, x) € Loo(T),
where £, (T) is the real Banach space of all bounded functions on T with the supremum norm

P € Lo(T) = Pl = sup |p¢|.
teT

The subscript oo in the norm symbol will be omitted if no confusion arises. When the index set T is compact and the functions
at) are continuous on T, we may substitute £..(T) by the space C(T) of continuous functions over a compact set.

By means of the linear mapping A : X — £,,(T) defined as Ax := (a’(‘“), x), the problem P can be reformulated as

P: Sup (c* x)

Ax<b (2)
.t -
s xeQ.
Here b = (b;),_,. Thanks to the boundedness of {a;, t € T}, the linear operator A is bounded, and so continuous, as
Al = sup [|lAx]| = sup sup |(a},x)| < sup sup |a; | x| = sup [aF] .
lxll<1 lIxll<1 teT lIxll<1 teT teT

; this

If X is reflexive, associated with each t € T, there exists some x; € X such that ||x.|| = 1 and satisfying (a}, x;) = ||a;‘

fact leads to [|A]| = sup,cr ||af]|-
The problem P is called primal as it has an associated dual problem D defined as follows:

D: Inf (u,b)
A'ppect —Q°,

s.t. >0,

where ;€ £y (T)*, A* : £o(T)* — X* is the adjoint operator of A, i.e.
(A*w,x) = (u, Ax), forevery u € £oo(T)* and every x € X,
and Q° is the dual cone of Q
Q°={q¢"€X":(q",q) <Oforallg € Q}.

This dual problem falls in the duality model introduced by Kretschmer in [4] and it is developed here at an intermediate
level of generality between the approaches in [5,6]. Anderson and Nash have given a detailed account of this theory in
[1, Chapter 3]. In fact, our pair of dual problems P and D are particular instances of problems IP and IP* in [1, pp. 38 and 39],
respectively. Here, A is a continuous linear mapping between X and {¢.,(T) with respect to the norm topologies, but
Proposition 5 in [1, p. 37] applies to guarantee that our dual pair falls in the model studied in the book [1, Section 3.3].
Actually, the theory in [1, Section 3.3] is built on a reflexive context (dual pairs of vector spaces), but the reflexivity is required
only to guarantee that the dual of the dual problem IP*, i.e. IP**, is identical to IP. Therefore, the reflexivity assumption has
no influence in the arguments used in the proofs when this second dual IP** is not involved.
The dual objects we study in the paper are the associated feasible sets

Fpi={xeX:Ax<bandx e Q},
and

Fpi={p € loo(T)* : A*n € T* — Q° and 11 > 0},
the optimal values

vp :=sup(c*,x) and wvp:= inf (u,b),
xeFp nefp
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