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a b s t r a c t

In this paper, we study limit cycle bifurcations for a kind of non-smooth polynomial
differential systems by perturbing a piecewise linear Hamiltonian system with the center
at the origin and a homoclinic loop around the origin. By using the first Melnikov function
of piecewise near-Hamiltonian systems, we give lower bounds of the maximal number
of limit cycles in Hopf and homoclinic bifurcations, and derive an upper bound of the
number of limit cycles that bifurcate from the periodic annulus between the center and the
homoclinic loop up to the first order in ε. In the case when the degree of perturbing terms
is low, we obtain a precise result on the number of zeros of the first Melnikov function.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and main results

There are many problems in mechanics, electrical engineering and the theory of automatic control which are described
by non-smooth systems; see for instance the works of Filippov [1], Andronov et al. [2], Kunze [3] and the references therein.
Recently, a good deal of work has been done to study bifurcations in non-smooth systems including Hopf, homoclinic and
subharmonic bifurcations. In [4–6], Hopf bifurcation for non-smooth systems was studied by developing new methods for
computing Lyapunov constants. The Melnikov method for Hopf and homoclinic bifurcations was extended to non-smooth
systems in [7–9]. The method of averaging has also been extended to non-smooth systems in [10]. More results can be
found in [11–18]. However, so far there are few papers in the literature studying homoclinic bifurcations inside the class of
piecewise polynomial differential systems. In this work, we study this problem by using the first order Melnikov function
of piecewise near-Hamiltonian systems.
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Fig. 1. The closed orbits of (1.1) |ε=0 .

In [7], Liu and Han considered the general form of a piecewise near-Hamiltonian system on the plane
ẋ = Hy + εp(x, y, δ),
ẏ = −Hx + εq(x, y, δ), (1.1)

where

H(x, y) =


H+(x, y), x ≥ 0,
H−(x, y), x < 0,

p(x, y, δ) =


p+(x, y, δ), x ≥ 0,
p−(x, y, δ), x < 0,

q(x, y, δ) =


q+(x, y, δ), x ≥ 0,
q−(x, y, δ), x < 0.

H±, p± and q± are C∞, ε > 0 is small, δ ∈ D ⊂ Rm is a vector parameter with D compact. This system has two subsystems
ẋ = H+

y + εp+(x, y, δ),
ẏ = −H+

x + εq+(x, y, δ),
(1.1a)

and 
ẋ = H−

y + εp−(x, y, δ),
ẏ = −H−

x + εq−(x, y, δ),
(1.1a)

which are called the right subsystem and the left subsystem, respectively. Suppose that (1.1) |ε=0 has a family of periodic
orbits around the origin and satisfies the following two assumptions.

Assumption (I). There exist an interval J = (α, β), and two points A(h) = (0, a(h)) and A1(h) = (0, a1(h)) such that for
h ∈ J

H+(A(h)) = H+(A1(h)) = h, H−(A(h)) = H−(A1(h)) =h, a(h) ≠ a1(h).

Assumption (II). The subsystem (1.1a) |ε=0 has an orbital arc L+

h starting from A(h) and ending at A1(h) defined by
H+(x, y) = h, x ≥ 0; the subsystem (1.1b) |ε=0 has an orbital arc L−

h starting from A1(h) and ending at A(h) defined by
H−(x, y) = H−(A1(h)), x < 0.

Under Assumptions (I) and (II), (1.1) |ε=0 has a family of non-smooth periodic orbits Lh = L+

h ∪ L−

h , h ∈ J . For definiteness,
we assume that the orbits Lh for h ∈ J orientate anticlockwise; see Fig. 1.

By Theorem 1.1 in [7], the first order Melnikov function of system (1.1) has the form

M(h, δ) =
H+

y (A)

H−
y (A)


H−

y (A1)

H+
y (A1)


L+h

q+dx − p+dy +


L−h

q−dx − p−dy


, h ∈ J. (1.2)
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