Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces

Dragan Đorić^a, Zoran Kadelburg^{b,*}, Stojan Radenović^c

^a University of Belgrade, Faculty of Organizational Sciences, Jove Ilića 154, 11000 Beograd, Serbia

^b University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Beograd, Serbia

^c University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Beograd, Serbia

ARTICLE INFO

Article history: Received 9 April 2011 Accepted 24 September 2011 Communicated by Enzo Mitidieri

MSC: 47H10 54H25

Keywords: Cone metric space Normal cone Common fixed point Edelstein's theorem

1. Introduction

In 1962, M. Edelstein proved the following version of the Banach contraction principle.

Theorem 1.1 ([1]). Let (X, d) be a compact metric space and let $T : X \to X$ be a self-mapping. Assume that

d(Tx, Ty) < d(x, y)

holds for all $x, y \in X$ with $x \neq y$. Then T has a unique fixed point in X.

Recently (in 2008 and 2009), T. Suzuki proved generalized versions of both Banach's and Edelstein's basic results, and thus initiated a lot of work in this direction. Several authors obtained variations and refinements of his "non-compact" result [2]. Thus, e.g., Suzuki-type versions of Kannan's and other fixed point theorems were proved in [3–8].

The "compact" (Edelstein-type) result was obtained by Suzuki in [9].

Theorem 1.2 ([9]). Let (X, d) be a compact metric space and let $T : X \to X$. Assume that

$$\frac{1}{2}d(x,Tx) < d(x,y) \Longrightarrow d(Tx,Ty) < d(x,y)$$
(1.1)

holds for all $x, y \in X$. Then T has a unique fixed point in X.

ABSTRACT

Generalizations of the Edelstein–Suzuki theorem [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. TMA 71 (2009), 5313–5317], including versions of the Kannan, Chatterjea and Hardy–Rogers-type fixed point results for compact metric spaces, are proved. Also, abstract metric versions of these results are obtained. Examples are presented to distinguish our results from the existing ones.

© 2011 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +381 11 3234967; fax: +381 11 3284733. E-mail addresses: djoricd@fon.bg.ac.rs (D. Đorić), kadelbur@matf.bg.ac.rs (Z. Kadelburg), radens@beotel.net (S. Radenović).

 $^{0362\}text{-}546X/\$$ – see front matter C 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.09.046

This theorem did not attract that much attention (some results were given in [7,8]). We prove in this paper generalizations of this theorem, including the Kannan, Chatterjea and Hardy–Rogers-type fixed point results (see [10]), in the Edelstein–Suzuki setting.

Also, abstract (cone) metric versions of these results are obtained, where the cone metric is taken in the sense of [11–13]. We note that a cone metric version of the Edelstein theorem was given already in the initial paper of Huang and Zhang [11], but with the condition that the underlying cone is regular. A "non-compact" result of this kind was proved by Farajzadeh et al. in [14].

Examples are presented to distinguish our results from the existing ones.

2. Preliminaries

Let *E* be a real Banach space with θ as the zero element and let *P* be a subset of *E* with the interior int *P*. The subset *P* is called a *cone* if: (a) *P* is closed, nonempty and $P \neq \{\theta\}$; (b) $a, b \in \mathbb{R}$, $a, b \geq 0$, and $x, y \in P$ implies $ax + by \in P$; (c) $P \cap (-P) = \{\theta\}$. For the given cone *P*, a partial ordering \leq with respect to *P* is introduced in the following way: $x \leq y$ if and only if $y - x \in P$. We write $x \prec y$ to indicate that $x \leq y$, but $x \neq y$. If $y - x \in$ int *P*, we write $x \ll y$. If int $P \neq \emptyset$, the cone *P* is called *solid*.

The cone *P* in *E* is called *normal* if there exists K > 0 such that for all $x, y \in E$, $\theta \le x \le y$ implies that $||x|| \le K||y||$ (the minimal constant *K* satisfying the previous inequality is called the *normal constant* of *P*). It is known (see, e.g., [12]) that the previous condition is equivalent to the condition that there exists a norm $|| \cdot ||_1$ on *E*, equivalent to the given one, which is *monotone*, i.e., such that $\theta \le x \le y$ implies that $||x||_1 \le ||y||_1$.

Let X be a nonempty set. Suppose that the mapping $d : X \times X \to E$ satisfies: $(d_1) \theta \leq d(x, y)$ for all $x, y \in X$ and $d(x, y) = \theta$ if and only if x = y; $(d_2) d(x, y) = d(y, x)$ for all $x, y \in X$; $(d_3) d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$. Then d is called a *cone metric* on X and (X, d) is called an *abstract (cone) metric space* [11]. For basic notions for these spaces we refer the reader to [11–13].

If the cone *P* is solid and normal then, using the previously mentioned equivalence, we can always suppose that the normal constant of *P* is K = 1, and that the given norm in *E* is monotone. In particular, we can take as a metric in *X* the function $D : X \times X \rightarrow \mathbb{R}$, given by D(x, y) = ||d(x, y)||, since it follows from [12,15] that this metric and the cone metric *d* give the same topologies on *X*, i.e., these spaces have the same collections of open, closed, bounded and compact sets, etc. In particular, in this case we can take that the following holds for all $c, d \in E$:

$$\theta \leq c \ll d \Longrightarrow \|c\| < \|d\|$$

(see also [14, Lemma 2.1]).

3. Results

Our first result is an Edelstein-Suzuki variant of the Hardy-Rogers fixed point theorem.

Theorem 3.1. Let (X, d) be a compact metric space and let $T : X \to X$. Assume that

$$\frac{1}{2}d(x,Tx) < d(x,y) \Longrightarrow d(Tx,Ty) < Ad(x,y) + Bd(x,Tx) + Cd(y,Ty) + Dd(x,Ty) + Ed(y,Tx)$$
(3.1)

holds for all $x, y \in X$, where the nonnegative constants A, B, C, D, E satisfy that

A + B + C + 2D = 1 and $C \neq 1$.

Then T has a fixed point in X. If $E \le B + C + D$ then the fixed point of T is unique.

Proof. Define

1

 $\beta = \inf\{d(x, Tx) : x \in X\}.$

There exists a sequence $\{x_n\}$ in X such that $\lim_n d(x_n, Tx_n) = \beta$. Since X is compact, we can suppose that there are $v, w \in X$ such that $\lim_n x_n = v$ and $\lim_n Tx_n = w$. Then

 $\lim_{n} d(x_n, w) = \lim_{n} d(x_n, Tx_n) = d(v, w) = \beta.$

In order to prove that $\beta = 0$, suppose, to the contrary, that $\beta > 0$. Then there exists $n_0 \in \mathbb{N}$ such that

$$n \ge n_0 \Longrightarrow \frac{2}{3}\beta < d(x_n, w) \text{ and } d(x_n, Tx_n) < \frac{4}{3}\beta.$$

It follows that, for $n \ge n_0$, $\frac{1}{2}d(x_n, Tx_n) < \frac{2}{3}\beta < d(x_n, w)$ and (3.1) implies that

 $d(Tx_n, Tw) < Ad(x_n, w) + Bd(x_n, Tx_n) + Cd(w, Tw) + Dd(x_n, Tw) + Ed(w, Tx_n)$

(2.1)

Download English Version:

https://daneshyari.com/en/article/840798

Download Persian Version:

https://daneshyari.com/article/840798

Daneshyari.com