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A B S T R A C T

Detection of somatic mutations holds great potential in cancer treatment and has been a very active research
field in the past few years, especially since the breakthrough of the next-generation sequencing technology.
A collection of variant calling pipelines have been developed with different underlying models, filters, input
data requirements, and targeted applications. This review aims to enumerate these unique features of the
state-of-the-art variant callers, in the hope to provide a practical guide for selecting the appropriate pipeline
for specific applications. We will focus on the detection of somatic single nucleotide variants, ranging from
traditional variant callers based on whole genome or exome sequencing of paired tumor-normal samples
to recent low-frequency variant callers designed for targeted sequencing protocols with unique molecular
identifiers. The variant callers have been extensively benchmarked with inconsistent performances across
these studies. We will review the reference materials, datasets, and performance metrics that have been
used in the benchmarking studies. In the end, we will discuss emerging trends and future directions of the
variant calling algorithms.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

DNA mutation is the cause of cancer and a major focus of cancer
research and treatment. Next-generation sequencing (NGS) is by
far the most promising technology for de novo mutation detection,
thanks to the huge amount of reads that modern sequencers can gen-
erate. Theoretically, all mutations regardless of the variant allele fre-
quency (VAF) or genomic region can be observed given enough read
depth. However, calling them with confidence is not trivial due to
noise in the reads. Numerous bioinformatics tools have been devel-
oped to uncover mutations (variants) from sequencing reads, and
such procedures typically consist of three components: read process-
ing, mapping and alignment, and variant calling. First, low quality
bases (usually near the 3’ end of reads) and exogenous sequences
such as sequencing adapters are trimmed with read processing tools
such as Cutadapt [1], NGS QC Toolkit [2], and FASTX-Toolkit. Some
targeted sequencing protocols use PCR primers or unique molecular
identifiers (UMI) during library preparation. In this case, custom-
built read processing scripts may be required to trim and extract
these oligonucleotides. Second, the cleaned reads are mapped to
where they may come from in the reference genome, and then
aligned base-by-base. Commonly used mapping and alignment tools
include BWA [3], NovoAlign, and TMAP (for Ion Torrent reads) for
DNA sequencing, and splice-aware aligners such as TopHat [4] and
STAR [5] for RNA sequencing. PCR de-duplication, indel-realignment,
and base quality recalibration can be performed in this step as
outlined in the Genome Analysis Toolkits (GATK)’s best practice
for variant calling [6,7]. The last step, variant calling, is essen-
tially a process of separating real variants from artifacts stemming
from library preparation, sample enrichment, sequencing, and map-
ping/alignment. It has been a very active research field for years and
plenty of variant callers have been developed, many freely avail-
able. The goal of this article is to review the state-of-the-art variant
callers for somatic variants, in the hope to assist practitioners, espe-
cially non-bioinformaticians, to select the appropriate variant caller
for their own applications.

The underlying assumptions are quite different for germline and
somatic variant calling algorithms. Germline variants are expected to
have 50 or 100% allele frequencies, therefore germline variant call-
ing is essentially to determine which of the three genotypes, AA, AB,
or BB, fit the data best [7–10]. Most artifacts are present in low fre-
quency and unlikely to cause trouble, because homozygous reference
would be the most likely genotype in this case. But rejecting these
artifacts is not as easy in somatic variant calling, because some real
variants could also be present in very low frequencies in cases of
impure sample, rare tumor subclone, or circulating DNA. Therefore,
the biggest challenge of somatic variant calling is to disambiguate
low-frequency variants from artifacts, which requires more sensitive
statistical modeling and advanced error correction technology.

Genetic variants can be grouped into three categories by size:
single nucleotide variant (SNV), insertion and deletion (indel), and
structural variant (SV, including copy number variation, duplication,
translocation, etc.). Very few variant callers are versatile enough to
call all three because they require very different algorithms. For SNV
and short indels (typically ≤10bp), the general strategy is to look for
non-reference bases from the stack of reads that cover each position.
Probabilistic modeling is critical here to infer the underlying geno-
type or evaluate the odds of variant versus artifacts. For structural
variants and long indels, since the reads are too short to span over
any variant, the focus is to locate the breakpoints based on the sud-
den change of read depth or patterns of misalignment with paired
end reads. Split-reads and de-novo assembly methods are often used
for SV and long indel detection.

In this review, we will focus on somatic SNV calling algorithms.
We will review 46 publicly available somatic SNV callers that cover
a wide spectrum of applications, in the hope to provide a practical

guide for choosing the appropriate software. We will also explain
the core algorithm of each variant caller and, if applicable, highlight
the strengths and caveats. Germline-only callers, such as GATK
UnifiedGenotyper/HaplotypeCaller, inGAP, and MAQ [6,7,11,12] are
not included in this review. Although UnifiedGenotyper and Hap-
lotypeCaller have been used for somatic variant calling, their core
algorithms are not designed for this task and perform poorly for low-
frequency somatic variants, as stated in the GATK documentation
and shown by independent studies [13,14]. We will also exclude
variant callers that are primarily used for pooled-samples such as
CRISP and thunder [15,16].

The article will be structured as follows. We will first describe the
general workflow of somatic SNV calling in Section 2. Next, we will
explain the core algorithms of individual variant callers and arrange
them by the intended application in Sections 3–6. Each dedicated to
one type of application. We will then discuss methods of evaluating
variant calling performance and review recent progress in bench-
marking studies in Section 7. Finally, we will summarize the research
field and discuss future directions in Section 8.

2. General workflow of somatic SNV calling

2.1. Pre-processing

In general, variant callers consist of three components: pre-
processing, variant evaluation, and post-filtering. The main purpose
of pre-processing is to keep low-quality reads from entering the
variant evaluation procedure. Read quality is typically measured by
average base quality score, mapping quality score, and number of
mismatches from the reference genome, etc. If the SNV caller follows
a position-based strategy, which basically calls variant at each target
position independently and is adopted by most SNV callers, a read
can be included at one position and excluded at another, depending
on the base quality scores at each individual position. Some vari-
ant callers such as Strelka [17] and VarDict [18] implement local
indel realignments during pre-processing, resulting in better accu-
racy around indels. This can also be done using GATK IndelRealigner
and BQSR (base quality score recalibration). PCR de-duplication is
recommended in whole genome or whole exome sequencing data
and can be performed with SAMtools or Picard tools. But it is not rec-
ommended in PCR-based amplicon sequencing applications where
distinct DNA fragments can share the same genome coordinates. Also
included in this step is downsampling during which a subset of reads
are randomly selected to proceed to the next steps. Downsampling
saves computation time and improves coverage uniformity if done at
specific regions, but also makes the results non-deterministic.

2.2. Variant evaluation

Variant evaluation algorithm is the centerpiece of somatic variant
callers and hence the focus of this review. Depending on the type of
input data and the intended application, the algorithms can be sum-
marized to four categories: matched tumor-normal variant calling,
single-sample variant calling, UMI-based variant calling, and RNA-
seq variant calling. Individual algorithms will be discussed in detail
in Sections 3–6.

2.3. Post-filtering

Sequencing or alignment artifacts may appear to have strong read
evidence and trick the statistical model to pass them as real variants.
Most variant callers apply a set of filters to identify these artifacts
and hence improve the specificity. Strand bias filter, for example,
catches artifacts whose reads are only or dominantly observed on
one strand, a common error in Illumina reads [19,20]. Strand bias
filters rely on the Fisher’s exact test to identify imbalanced strand
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