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18Industrial bioreactors range from 10.000 to 700.000 L and characteristically show different zones of substrate
19availabilities, dissolved gas concentrations and pH values reflecting physical, technical and economic constraints
20of scale-up. Microbial producers are fluctuating inside the bioreactors thereby experiencing frequently changing
21micro-environmental conditions. The external stimuli induce responses on microbial metabolism and on tran-
22scriptional regulation programs. Both may deteriorate the expected microbial production performance in large
23scale compared to expectations deduced from ideal, well-mixed lab-scale conditions. Accordingly, predictive
24tools are needed to quantify large-scale impacts considering bioreactor heterogeneities. The review shows that
25the time is right to combine simulations of microbial kinetics with calculations of large-scale environmental con-
26ditions to predict the bioreactor performance. Accordingly, basic experimental procedures and computational
27tools are presented to derive proper microbial models and hydrodynamic conditions, and to link both for biore-
28actor modeling. Particular emphasis is laid on the identification of gene regulatory networks as the implementa-
29tion of such models will surely gain momentum in future studies.
30© 2018 Zieringer, Takors. Published by Elsevier B.V. on behalf of the Research Network of Computational and

31 Structural Biotechnology. This is an open access article under the CC BY license
32 (http://creativecommons.org/licenses/by/4.0/).
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611. Introduction

62With the advent ofmetabolic engineering in the 1990s Bailey [1], the
63engineers' view on microbes changed. Process optimization no longer
64considered the extracellular environment (i.e. cultivation conditions)
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65 alone, but started to investigate intracellular mechanisms in addition
66 Bailey [1]; Vallino and Stephanopoulos [2]. Since then, intracellular
67 reaction rates have been quantified and models of regulatory processes
68 finally aiming at identifying ta rgets for further strain and process
69 improvement have been derived. To some extent driven by the observa-
70 tions that cellular engineering always results in multiple and complex
71 systemic responses Bailey [1], furthermore catalyzed by the avalanche
72 of omics data that were accessible, systems biology and systems
73 metabolic engineering emerged in 2000. In essence, holistic models
74 have been developed that aim to provide as sound and comprehensive
75 a cellular view as possible.
76 The development clearly reflects the general engineeringmindset of
77 investigating the whole system by modularization, quantitative
78 analysis, reassembling and studying the interaction of the networked
79 modules. The earliest, simple examples may be given by the Monod
80 growth model Jacob and Monod [3], followed by more sophisticated
81 approaches like the lactose operon considering feedback regulation in
82 Escherichia coli, finally leading to complex models comprising multiple
83 levels of cellular regulation Kitano [4]. While such movements led to
84 the birth of systems biology Westerhoff and Palsson [5] and systems
85 metabolic engineering Lee et al. [6]; Park and Lee [7]; Becker et al. [8];
86 Wittmann and Lee [9] core engineering activities such as scale-up
87 were a matter of steady development, too.
88 Scale-up is the procedure to transfer lab-bioprocesses in production
89 (large) conditions, often covering 7 to 8 orders of magnitude of volume.
90 Unfortunately, loss or even failure of large-scale performance may
91 occur. Detailed knowhow is necessary to prevent unwanted production
92 losses. Accordingly, Oosterhuis andKossenwere thefirstwhopresented
93 a scale-up simulator (1983) for investigating the impact of oxygen
94 gradients on Gluconobacter oxydans Oosterhuis et al. [10]. They further
95 introduced bioreactor compartment models to achieve the coarse
96 spatial resolution of local oxygen transfer rates to identify micro- and
97 anaerobic zones Oosterhuis and Kossen [11]. This line of thinking was
98 followed by a series of similar studies Neubauer et al. [12]; Buchholz
99 et al. [13]; Löffler et al. [14,15]; von Wulffen et al. [16] and reached a
100 new level of complexity by linking simulations of hydrodynamics and
101 mass transports with simple metabolic models of Saccaromyces
102 cerevisiae and E. coli Bylund et al. [17]; Lapin et al. [18,19]; Wang et al.
103 [20]; Haringa et al. [21]. Notably, cellular dynamics were modeled by
104 focusing on metabolism dynamics only. This is remarkable as systems
105 biology has already shown that holistic models are able to cover a far
106 broader range of complexity. Scale-up engineers have already pointed
107 out Delvigne et al. [22] that profound knowhow is necessary to enable
108 the best knowledge-based scale-up using in silico predictions.
109 This review addresses the current need for knowledge-based pro-
110 cess scale-up by elucidating the putative contributions of modeling.
111 The existing plethora of modeling approaches will be structured with
112 respect to granularity and usefulness to (i) identify and (ii) model key
113 regulatory phenomena and (iii) to link cellular models with predictions
114 of large-scale hydrodynamics. It will be shown that the time is right to
115 approach the challenging goal of in silico predicted large-scale perfor-
116 mance of microbial producers.

117 2. Data-driven Approach

118 Comprehensive data sets are necessary to develop gene regulatory
119 models, generated to answer the biological question of interest. This
120 also holds true for elucidating complex metabolic and regulatory
121 responses of producer cells that are exposed to industrial production
122 conditions. One approach to collect representative data is to mimic
123 large-scale conditions and to capture time series of regulatory dynamics
124 as a basis for unraveling dynamic regulatory models. Such approaches
125 usually require rapid sampling experiments that ‘freeze’ metabolic
126 statesmonitored in scale-down experiments. Examples of experimental
127 procedures are given in the following.

1282.1. Experimental Set-Ups Mimicking Large-Scale Heterogeneities

129In large-scale production processes micro-environmental inhomo-
130geneities often occur. Insufficient mixing leads to severe axial and
131horizontal concentration gradients. Producer cells frequently cross
132these poorly mixed zones which triggers metabolic and transcriptional
133responses accordingly Takors [23]. Because large-scale experimental
134data are rarely accessible, experimental scale-up simulators are typi-
135cally applied, reflecting large-scale conditions Delafosse et al. [24].
136Pioneering studies were performed by Oosterhuis and Kossen
137Oosterhuis et al. [10] using a two compartment system comprising
138two stirred tank reactors (STRs) to investigate the effect of different
139oxygen levels upon the gluconic acid fermentation of Gluconobacter
140oxydans. Since then, variations of the two compartment set up consid-
141ered the combination of an STR and a plug flow reactor (PFR). Reviews
142have been given by Delvigne et al. and Neubauer et al. Delvigne et al.
143[22]; Neubauer and Junne [26]. Fig. 1 depicts selected examples for
144several STR-STR and STR-PFR applications.
145Experimental scale-up simulators do not merely consist of two
146compartments. Three compartment approaches have been studied as
147well. Examples are the STR-STR-STR cascade of Buchholz et al. Buchholz
148et al. [13] and the PFR-STR-PFR set-up of Lemoine et al. [28]. Accord-
149ingly, more complex scale-up scenarios could be analyzed.
150Notably, two and three compartment scale-up simulatorsmirror the
151cellular responses on repeated, frequent stimuli. In contrast, investiga-
152tions of single perturbations may be a proper tool for deriving distinct
153stimulus/response correlations, see Fig. 1 for examples. On this basis,
154explicit metabolic and transcriptional dynamics can be deduced that,
155when properly superimposed, result in the complex cellular response
156observed. However, signal transduction is highly networked in the
157cells which may cause the cross-interference of multiple stimuli. The
158coincidence of multiple stimuli in large-scale fermentation is the rule
159rather than the exception Xu et al. [29]; Egli [30]. Accordingly, multiple
160stimulus/response studies are likely to gain importance in the future.

1612.2. Experimental Access to Metabolic and Transcriptional Responses

162Samples taken from the scale-up simulators need to be processed so
163that metabolic and transcriptional states are ‘frozen’ immediately.
164Metabolic inactivation and purification can be achieved via several
165approaches Oldiges et al. [31]; Teleki et al. [32]; Pfizenmaier et al. [33];
166Matuszczyk et al. [34] and requires individual optimization for the
167given problem. Blocking intracellular transcription is achieved by sam-
168pling into RNAprotect kits Löffler et al. [14]. Correctly prepared, samples
169can be treated further to identify metabolic compositions via metabolic
170profiling or fingerprinting techniques Fernie et al. [35]; Winder et al.
171[36]; Fiehn [37], protein contents via affinity tags Gygi et al. [38] or
172mass spectrometry Aebersold and Mann [39] and transcript levels,
173either applying microarrays or, more preferred, next generation
174sequencing technologies analyzing mRNAs Nagalakshmi et al. [40];
175Nookaew et al. [41]; Wang et al. [42]. To reduce the overall sequencing
176expenses, library preparation usually is done via a rRNA depletion or
177poly-A enrichment step to remove non-coding rRNA.
178Various methods for RNA Seq analysis are available and have been
179reviewed recently by Conesa et al. Conesa et al. [43]. Regarding model-
180ing, time series of transcripts are particularly important which requires
181methods of differential gene expression analysis. Fig. 2 provides an
182overview of a typical workflow making use of public R packages.
183Once time series of transcripts are available, modelers may be inter-
184ested in unraveling gene clusters showing similar transcription dynam-
185ics and data integration in dynamic models. Applicants may be guided
186via evaluating reports of Rapaport et al. Rapaport et al. [49], Hecker
187et al. and Banf et al. Hecker et al. [50]; Banf and Rhee [51]. Currently,
188algorithms such as DeSeq2 Love et al. [52] and MaSigPro Conesa et al.
189[53] are often applied.
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