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a b s t r a c t

An averaging principle is derived for the abstract nonlinear evolution equation where the
almost periodic right hand-side is a continuous perturbation of the time-dependent family
of linear operators determining a linear evolution system. It generalizes classical Henry’s
results for perturbations of sectorial operators on fractional spaces. It is also proved that
the main hypothesis of the nonlinear averaging principle is satisfied for general hyperbolic
evolution equations introduced by Kato.
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1. Introduction

We are concerned with the limit behavior with regard to λ → 0+ of evolution systems of the form

u̇(t) = A(t/λ)u(t) + F(t/λ, u(t)), t > 0, (Pλ)

where {A(t)}t≥0 is a family of operators generating C0 semigroups of bounded linear operators on a Banach space E,
F : [0, +∞) × E → E is a continuous map satisfying the local Lipschitz condition with respect to the second variable
and λ > 0 is a parameter. The so-called averaging principle is a well known tool in the theory of ordinary differential
equations, i.e., when E is finite dimensional. Roughly speaking, it says that if F is periodic in time, then trajectories of
u̇(t) = F(t/λ, u(t)) converge to trajectories of the averaged equation as λ → 0+ (see [1]). This averaging idea is of
importance when studying qualitative behavior of nonautonomous equations. It enables to perceive the dynamics of a
nonautonomous equation in terms of the related averaged one. For instance, by this approach, one may examine global
attractors for dissipative equations, periodic solutions and other dynamic features such as bounded or recurrent solutions.
Therefore extending the method to the infinite dimension and applying it to partial differential equations is a natural and
vital issue attractingmuch attention. The averaging principle in the infinite dimensional casewas obtained byHenry [2]who
assumed that the (independent of time) operator A is a sectorial one on a Banach space E and F : [0, +∞)×Eα

→ E, where
Eα , 0 ≤ α < 1, is the fractional power space determined by A, is bounded and continuous. Averaging for time dependent
(set-valued) perturbations of a C0 group generator was considered by Kamenskii et al. in [3], where A was a C0 semigroup
generator and F was an upper semicontinuous k-set contraction with respect to a measure of noncompactness. Averaging
principle, in the context of attractors and the Conley–Rybakowski index, for parabolic partial differential equations on RN

was used by Antocci and Prizzi [4] and Prizzi [5]. Recently a version of the averaging principle has been obtained by the
author in [6] where A was a C0 semigroup generator and F a time periodic continuous perturbation.
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In this paper we look for a general averaging scheme in the abstract operator setting with time dependent A and
apply it to hyperbolic evolution equations. We shall prove a general principle, a version of which can be stated as follows
(cf. Theorem 2.2 and Remark 2.10).

Theorem 1.1. Let {R(λ)(t, s)}t≥s≥0, λ > 0, be linear evolution systems on a separable Banach space E, corresponding to the
problems

u̇(t) = A(t/λ)u(t), t > s,
u(s) = ū ∈ E.

Suppose that
(A1) there are M ≥ 1 and ω ∈ R such that ‖R(λ)(t, s)‖ ≤ Meω(t−s) if t ≥ s ≥ 0;
(A2) there exists a C0 semigroup {S(t)}t≥0 of bounded linear operators on E with the infinitesimal generatorA such that, for any

ū ∈ E and t, s ≥ 0 with t ≥ 0,

lim
λ→0+, v̄→ū

R(λ)(t, s)v̄ =S(t − s)ū

uniformly with respect to t, s from bounded intervals;
(A3) a continuous mapping F : [0, +∞) × E → E is Lipschitz on bounded subsets and has sublinear growth uniformly with

respect to the second variable;
(A4) for each ū ∈ E, the set {F(t, ū) | t ≥ 0} is relatively compact and there is a locally Lipschitz mappingF : E → E such that,

for any ū ∈ E and h > 0,

F(ū) = lim
T→+∞,v̄→ū

1
T

∫ T

0
F(τ + h, v̄) dτ

uniformly with respect to h.
Then, for any (λn) in (0, +∞) and (ūn) in E such that λn → 0+ and ūn → ū0 for some ū0 ∈ E, the mild solutions
un : [0, +∞) → E of (Pλn) satisfying un(0) = ūn, n ≥ 1, converge uniformly on bounded intervals to the mild solution of
the averaged problem

u̇(t) =Au(t) +F(u(t)), t > 0,
u(0) = ū0.

Assumptions (A1) and (A2) actually state that the averaging principle holds for the linear equation. Obviously, it is always
the case if A is independent of time and is an infinitesimal generator of a C0 semigroup. We will verify (A1) and (A2) for
hyperbolic type linear evolution systems introduced by Kato—see Theorem 3.3. Assumption (A3) and the separability of
E are to assure the existence of unique mild solutions for initial value problems associated with (Pλ), the boundedness of
solutions starting from bounded sets and the relative compactness of semiorbits of relatively compact sets (see (H1)–(H3)).
Finally, (A4) simply says that F has the averageF . It is worth mentioning that (A4) is fulfilled if F is almost periodic with
respect to time (see [7]) and it is always the case when F is time-periodic. The obtained theorem generalizes those known
in the literature—see Remark 2.6.

The paper is organized as follows. Section 2 is devoted to the general version of averaging principle while in Section 3
we are concerned with its verification for abstract linear hyperbolic evolution systems. Section 4 provides an example of
application to first order hyperbolic partial differential equations.
Notation

By R we denote the field of real numbers; by [x] we mean the integer (or floor) part of x ∈ R.
If X is a metric space and B ⊂ X , then ∂B and clB stand for the boundary of B and the closure of B, respectively. If x0 ∈ X

and r > 0, then B(x0, r) := {x ∈ M | d(x, x0) < r}.
If E is a normed space, then by ‖ · ‖ we denote its norm. If V is another normed space then L(V , E) stands for the space

of all bounded linear operators with domain V and values in E with the operator norm denoted by ‖ · ‖L(V ,E) or simply ‖ · ‖

if no confusion may appear.

2. General averaging principle

Recall that a family of bounded linear operators {R(t, s) : E → E}t≥s≥0 on a Banach space E is an evolution system if and
only if R(t, t) = I, R(t, s)R(s, r) = R(t, r), whenever t ≥ s ≥ r ≥ 0, and the mapping (s, t) → R(t, s)ū is continuous for
any ū ∈ E. In this section we deal with general evolution systems, i.e. we do not indicate how they are generated.

Evolution systems come up naturally in equations involving time-dependent families of linear operators. Namely, if
{A(t)}t≥0 is a family of linear operators in a Banach space E satisfying suitable assumptions, then for any s ≥ 0 and ū ∈ E,
the problem

u̇(t) = A(t)u(t), t > s,
u(s) = ū,
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