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Functional annotation transfer across multi-gene family orthologs can lead to functional misannotations.
We hypothesised that co-expression network will help predict functional orthologs amongst complex
homologous gene families. To explore the use of transcriptomic data available in public domain to iden-
tify functionally equivalent ones from all predicted orthologs, we collected genome wide expression data in
mouse and rat liver from over 1500 experiments with varied treatments. We used a hyper-graph clustering
method to identify clusters of orthologous genes co-expressed in both mouse and rat. We validated these
clusters by analysing expression profiles in each species separately, and demonstrating a high overlap. We
then focused on genes in 18 homology groups with one-to-many or many-to-many relationships between
two species, to discriminate between functionally equivalent and non-equivalent orthologs. Finally, we fur-
ther applied our method by collecting heart transcriptomic data (over 1400 experiments) in rat and mouse
to validate the method in an independent tissue.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Annotation of gene function is a crucial step to understand the
DNA sequencing data currently generated at an unprecedented rate.
The lack of functional annotation forms a major bottleneck in anal-
yses across diverse fields, including de novo genome sequencing [1],
Genome Wide Association Studies (GWAS) in model and non-model
organisms [2], and metagenomics [3]. An experimental validation
of each gene is impractical to this end as it demands high finan-
cial and time cost. It is estimated that only 1% of proteins have
experimental functional annotations [4]. Bioinformatic approaches
therefore provide an attractive alternative [5]. The most widely
used and successful gene annotation strategy has been the anno-
tation transfer between homologous genes. Automated annotation
pipelines from sequence alone are widely used, including GOtcha [6]
and BlastGO [7]. They allow fast annotation of thousands of genes for
newly sequenced genomes [8]. This approach can be used within a
species, where gene families (paralogs), might share common func-
tions, or across species, where known function(s) of a gene in one
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species are used to infer functions of the homologous gene(s) in
another species.

Despite being widely used, fast computational annotation comes
at a cost of misannotation, which is present at high levels (over 10%)
and is believed to be increasing [9] due to misannotation transfer.
The most common misannotation is over-annotation, where a gene is
assigned a specific but incorrect function [10]. This is partly because
one of the major challenges in functional annotation transfer across
species is that the orthology relationships are not always one-to-
one. Specifically, a single gene in one species can be homologous to
multiple paralogs in another (one-to-many homologies), after gene
duplication or gene loss event(s). After a gene duplication, the two
paralogs can have redundant functions, and thus should share similar
functional annotations, or one copy might diverge (lose functionality,
or gain new functionalities, or change cellular localisation or tissue
specificity), and thus paralogs should have different functional anno-
tations despite their homology. Similarly, multigene families (with
many-to-many homologies) are highly prone to over-annotation
errors.

Protein structure information can act as source for functional
distinction within multigene family proteins [4]. Protein-protein
interaction networks have also been successfully used to iden-
tify functional orthologs [11]; two orthologs interacting with the
same proteins in each species are likely to share similar functions.
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Similar strategy has been applied to biochemical pathway informa-
tion [12]. Co-expression gene networks have also been used in this
context [13-15], as they offer two main advantages over protein-
protein interactions and biochemical pathways. First, they can be
inferred from transcriptomic datasets, which are more abundant
than protein-protein interaction datasets. Second, they allow func-
tional annotation of the various classes of RNA genes. We have
previously shown that multi-species information improves gene
network reconstruction [16].

In order to further explore the potential of co-expressed gene
networks to identify functional equivalents in complex homologous
families, we collected transcriptomic data from mouse and rat liver
samples. To minimise technical variation, we collected datasets
generated using a single microarray platform in each species, result-
ing into 920 experiments in mouse and 620 experiments in rat. We
firstly identified clusters of co-expressed genes using hierarchical
clustering and found biologically relevant clusters. We applied an
hyper-graph clustering method, SCHype [17] to simultaneously
cluster co-expressed orthologous genes between species. We then
focussed on 18 complex (one-to-many or many-to-many) homol-
ogy groups, where at least one member in mouse and in rat where
present in similar co-regulated gene clusters providing an indepen-
dent source of evidence for shared functionality amongst orthologous
genes in complex homologous families. We successfully applied the
same method on heart transcriptomic data from mouse and rat, and
investigated functional relevance of 11 other orthologous groups.
Our results show the potential of this method to use co-expression
as an independent measure to evaluate shared functionality amongst
orthologs and limit over-zealous annotation transfers.

2. Methods
2.1. Data Collection and Normalisation

Microarray data for liver and heart samples in mouse and rat
were collected from GEO, where data for mouse was generated
using Affymetrix Mouse Genome 430 2.0 Array, and data for rat
was generated using Affymetrix Rat Genome 230 2.0 Array as they
were the platforms with a large number of experiments available
for each species. Liver experiments came from 62 (mouse) and 28
(rat) independent studies or GEO series. Heart experiments came
from 20 (mouse) and 19 (rat) independent studies or GEO series.
The GEO accession numbers for individual studies are provided in
Supplementary Table 1. Processed data was not directly compara-
ble between studies, as different studies used different normalisation
methods, leading to different distribution of values (Supplementary
Fig. 1, A and B, Supplementary Fig. 3, A and B). As some datasets had a
trimmed lower quartile for reduction in noise by limiting the variabil-
ity of lowly expressed genes, we applied lower quartile trimming on
alldatasets (Supplementary Fig. 1,Cand D, Supplementary Fig. 3,Cand
D). Specifically, we set the expression value of all probes belonging to
the lower quartile to the value of the 25 percentile. We then applied
quantile normalisation resulting into a uniform distribution of values
for each experiment. To facilitate the comparison between mouse and
ratdata, we used liver mouse dataas atarget for quantile normalisation
of heart mouse data and liver and heart rat data, using preprocess-
Core functions normalize.quantiles.determine.target and
normalize.quantiles.use.target [18]. Liver mouse data was
selected as the target because it contained more experiments than the
liver rat dataset. Thus, after our normalisation steps, the distribution
of values was identical for each experiment in both species.

2.2. Data Clustering

We selected genes with variable expression across experiments
by selecting probes with a standard deviation greater than one across

experiments. As shown in Fig. 1, such probes included genes of low
as well as high expression levels, and largely excluded probes show-
ing very low expression in all experiments. Microarray data being
already log-transformed, log fold change over the average values
were obtained by subtracting the mean expression of each probes.

Hierarchical clustering was done on the log fold change
matrices using R functions dist ad hclust with default parame-
ters (euclidean distance, complete linkage). Dendrogram branches
were reordered using the function order.optimal from the cba
package [19]. Both rows (probes) and columns (experiments) were
clustered using this approach.

Gene homology information was retrieved from the Homologen
database [20], and probe orthology information was obtained using
the R package annotationTools [21]. Due to one-to-many homologs,
rat probes and mouse probes intersections resulted into slightly
different numbers for each species. Average of the two numbers
was used to obtain Jaccard indexes. Jaccard index significance was
obtained using the hypergeometric test, and P-values were corrected
for multiple testing using Bonferroni correction.

SCHype takes as input a list of conserved interactions which was
generated as follows. First Spearman correlation coefficient between
each pair of probes was obtained independently for both Mouse and
Rat expression data. Pairs of probes with a correlation coefficient
> 0.5 were selected. Then if orthologs of two connected probes were
connected in the other species, they were kept as an SCHype input.
SCHype was run using default parameters. In liver, SCHype identi-
fied 132 clusters of homologous genes co-expressed both in mouse
and in rat, which included 825 nodes in mouse and 778 nodes in rat.
SCHype allows probes to be included in multiple clusters. The dif-
ferent number of probes in mouse and rat is due to the presence of
one-to-many and many-to-many orthologs, as well as the presence
of gene measured by multiple probes on the array.

2.3. Gene Ontology Analysis

Gene ontology analysis was performed using PantherDB [22],
using as a control gene set the genes analysed by the microarray, or
only the variable gene sets previously defined.

2.4. Scripts and Data Availability

R scripts used for this analysis are available in a Github repository
https://github.com/gdevailly/liver_mouse_rat. Normalised expres-
sion matrices, fold change matrices, as well as probe clusters
(hierarchical clustering and SCHype clustering) are available through
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Fig. 1. Identification of variable probes in mouse (A) and rat (B) datasets. Each dot
represents a single probe. X axis: standard deviation across experiments. Y-axis: mean
expression values across experiments (in arbitrary units). In black the probes with
a standard deviation > 1, in grey the probes with a standard deviation < 1. Orange
lines: 2D kernel density. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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