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17This review examines two important aspects that are central to modern big data bioinformatics analysis – soft-
18ware scalability and validity. We argue that not only are the issues of scalability and validation common to all
19big data bioinformatics analyses, they can be tackled by conceptually relatedmethodological approaches, namely
20divide-and-conquer (scalability) and multiple executions (validation). Scalability is defined as the ability for a
21program to scale based on workload. It has always been an important consideration when developing bioinfor-
22matics algorithms and programs. Nonetheless the surge of volume and variety of biological and biomedical data
23has posed new challenges. We discuss how modern cloud computing and big data programming frameworks
24such asMapReduce and Spark are being used to effectively implement divide-and-conquer in a distributed com-
25puting environment. Validation of software is another important issue in big data bioinformatics that is often
26ignored. Software validation is the process of determining whether the program under test fulfils the task for
27which it was designed. Determining the correctness of the computational output of big data bioinformatics soft-
28ware is especially difficult due to the large input space and complex algorithms involved. We discuss how state-
29of-the-art software testing techniques that are based on the idea of multiple executions, such as metamorphic
30testing, can be used to implement an effective bioinformatics quality assurance strategy. We hope this review
31will raise awareness of these critical issues in bioinformatics.
32© 2017 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
33Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

3435

36

37

38 1. Introduction

39 The term big data is used to describe data which are large with
40 respect to the following characteristics: volume (amount of data
41 generated), variety (type of data generated), velocity (speed of data
42 generation), variability (inconsistency of data) and veracity (quality of
43 captured data) [1]. Sequencing data is the most obvious example of
44 big data in the field of bioinformatics, especially with the advancement
45 in next-generation sequencing (NGS) technology and single cell capture
46 technology. Other examples of big data in bioinformatics include elec-
47 tronic health records, which contain a variety of information including
48 phenotypic, diagnostic and treatment information; and medical imag-
49 ing data, such as those produced by magnetic resonance imaging
50 (MRI), positron emission tomography (PET) and ultrasound. Further-
51 more, emerging big data relevant to biomedical research also include
52 data from social networks and wearable devices.
53 One particularly major advancement in experimental molecular
54 biology within the last decade has been the significant increase in
55 sequencing data available for analysis, at a cheaper cost [2]. The cost of
56 sequencing per genome has reduced from $100,000,000 in 2001, to

57$10,000,000 in 2007, down to a figure close to $1000 today. The $1000
58genome is already a reality [3]. Currently, the data that comes out of a
59NGS machine are in the order of several hundred gigabytes for a single
60human genome. With the rapid advancement in single-cell capture
61technology and the increasing interest in single-cell studies, it is expect-
62ed that the amount of sequencing data generated will increase substan-
63tially as each single-cell run can generate profiles for hundreds to
64thousands of samples [4]. In this review, we will focus specifically on
65bioinformatics software that deals with NGS data as this is currently
66one of the most prominent and rapidly expanding source of big data
67in bioinformatics.
68In this review,we argue that the twomain issues that are fundamen-
69tal to designing and running big data bioinformatics analysis are: the
70need for analysis tools which can scale to handle the large and unpre-
71dictable volume of data (Scalability) [4–7], and methods that can effec-
72tively determine whether the output of a big data analysis conforms to
73the users' expectation (Validation) [8,9]. In general, there are many
74other issues associated with bioinformatics big data analysis, such as
75storage, security and integration [10]. However, these issues have
76existed even before the rise of big data in bioinformatics, and are
77these issues are typically targeted to specific use cases, such as the
78storage of sensitive patient data and integration of several specific
79types of data. Solutions to these specific issues are available [11,12],
80though there may be additional challenges associated in implementing
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81 the solution due to the increased volume and noise. Nonetheless, these
82 issues are mostly specific to individual application areas. We believe
83 that if we can effectively deal with the scalability and validation prob-
84 lem, it will go a long way in terms of making big data analysis more
85 widespread in practice. This review aims to provide an overview of
86 the technological development that deals with the scalability and vali-
87 dation problems in big data bioinformatics for sequence-based analysis
88 tools.

89 2. Scalability

90 Scalability is not a unique challenge in big data analysis. In fact,
91 software scalability has always been an issue since the early days of bio-
92 informatics because of the high algorithmic complexity of some of the
93 algorithms such as those involving global multiple sequence alignment.
94 The early focus on scalability is on parallelising the computation,while a
95 lot less attention is paid on optimally distributing the data. Efforts to
96 make bioinformatics software scalable have continuously been made
97 with the evolution of new hardware technologies, such as cluster com-
98 puting, grid computing, Graphical Processing Unit (GPU) technology,
99 and cloud computing. Currently in the age of big data bioinformatics,
100 the focus is not only on parallelising computational intensive
101 algorithms, but also on highly distributed storage and efficient commu-
102 nication among various distributed storage or computational units.
103 Furthermore, the volume and variety of data can change dynamically
104 in response to potentially unpredictable user demand. For example, in
105 a medium-sized local sequencing centre, the volume of data can grow
106 rapidly during certain unexpected peak periods, but remain constant
107 during other periods. This variability of demand on computational
108 resources is also a critical feature of modern big data bioinformatics
109 analysis. In this section, we will review the evolution of parallel distrib-
110 uted computing technologies and how they have contributed to solving
111 the issue of scalability of bioinformatics software. In particular, we will
112 discuss howmodern cloud computing technology and big data analysis
113 frameworks, such as MapReduce and Spark, can be effectively used to
114 deal with the scalability problem in the big data era.

115 2.1. Cluster Computing

116 Early attempts at scaling bioinformatics software beyond massively
117 parallel (super) computers involved networking individual computers
118 into clusters to form a parallelised distributed-memory machine. In
119 this configuration, computations are performed by splitting and distrib-
120 uting tasks across Central Processing Units (CPUs) in a way that is
121 similar to the symmetric multiprocessing (SMP) approach utilised in
122 massively parallel computers. Unlike SMP, which relies on a shared
123 main memory, clusters have distributed-memory, with each node
124 having its ownmemory andhard drive, thus presenting a new challenge
125 in developing software for cluster environments. To help with the de-
126 velopment of cluster-based software, communications protocols and
127 software tools, such asMessage Passing Interface (MPI) [13] and Parallel
128 Virtual Machine (PVM) [14], have been developed for orchestrating
129 computations across nodes. An example of bioinformatics software de-
130 signed for cluster computing is mpiBLAST, an MPI-based, parallelised
131 implementation of the basic local alignment search tool (BLAST)
132 algorithm which performs pairwise sequence similarity between a
133 query sequence and a library or database of sequences [15]. The ap-
134 proach taken by mpiBLAST includes the use of a distributed database
135 to reduce both the number of sequences searched and disk I/O in each
136 node, thereby improving the performance of the BLAST algorithm.
137 MASON is another example of MPI-based bioinformatics software for
138 performingmultiple sequence alignment algorithmsusing the ClustalW
139 algorithm [16]. MASON speeds up the execution of ClustalW by
140 parallelising the time- and compute-intensive step of calculating a
141 distance matrix of the input sequences, and the final progressive
142 alignment stage.

1432.2. Grid Computing

144The next approach in scaling bioinformatics software comes with
145the introduction of grid computing, which represents an evolution in
146the distributed computing infrastructure. Grid computing allows for a
147collection of heterogeneous hardware, such as desktops, servers and
148clusters, which may be located in different geographical locations, to
149be connected through the Internet to form a massively distributed
150high performance environment [17]. Although conceptually similar to
151a cluster, grid computing presents a different set of challenges for
152developing software. The comparatively large latency between nodes
153in a grid environment compared to a cluster environment means that
154software for grid needs to be designed with minimum communication
155between nodes. Furthermore, the heterogeneity of the grid environ-
156ment means that software may need to take into account differences
157in the underlying operating system and the system architecture of the
158nodes. Development of bioinformatics software for a Grid typically
159uses a middleware layer which abstracts away the underlying grid
160architecture management. A widely-used middleware layer is the
161Globus Toolkit, a software toolkit for managing and developing in a
162grid environment [18]. An example of a bioinformatics software
163for the Grid environment is GridBLAST, an implementation of BLAST
164with Globus as the middleware layer for distributing BLAST queries
165across nodes in the grid [19]. Aside from Globus, there are also
166bioinformatics-specific grid middleware layers such as myGrid [20]
167and Squid [21].

1682.3. GPGPU

169The introduction of general-purpose computing on GPUs (GPGPUs)
170revived interest in the massively parallel approach initially used before
171the distributed computing approach becomes themainstream. GPUs are
172specialised processing units designed for performing graphic rendering.
173Unlike a CPU, which has a limited number of multi-processing units, a
174GPU has a large number of processing unit in the order of hundreds
175and thousands, thus allowing for thehigh computational throughput re-
176quired for rendering 3D graphics. Though the GPU is not a new technol-
177ogy, early GPU architectureswere hardwired for graphics rendering and
178thus itwasnot until thedevelopment of amore generalised architecture
179which support general-purpose computing that GPU become more
180widely used for computation. Aswith other technologies, there are chal-
181lenges associated with implementing bioinformatics software on GPUs
182due to the single instruction multiple data (SIMD) programming para-
183digmwhere data are processed in parallel using the same set of instruc-
184tions. Due to its architecture, computation for GPUwill need to designed
185with minimum level of branching (homogenous execution) with high
186computational complexity in order to fully take advantage of the high
187multiprocessing capability of the GPU. One of the early bioinformatics
188software utilising GPGPUs is GPU-RAxML (Randomized Axelerated
189MaximumLikelihood), a GPU based implementation of RAxML program
190for the construction of phylogenetic trees using a Maximum Likelihood
191method [22]. GPU-RAxML utilises the BrookGPU programming environ-
192ment [23], which supports both OpenGL and DirectX graphic libraries,
193to parallelise the longest loop in the RAxML program, which accounts
194for 50% of the execution time. Another example of GPU-accelerated
195bioinformatics software is CUDASW++, an implementation of the
196dynamic-programming based Smith-Waterman (SW) algorithm
197for local sequence alignment [24]. CUDASW++ utilises the CUDA
198(Compute Unified Device Architecture) programming environment
199[25], developed for NVIDIA GPU, to implement two parallelisation strat-
200egies of the SW algorithm based on the length of the subject sequence.

2012.4. Cloud Computing

202Cloud computing is defined by the United States' National Institute
203of Standards and Technology as ‘…a model for enabling ubiquitous,
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