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A B S T R A C T

During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data
from biological systems, unveiling more of their underling complexity. Biological systems encompass a
wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making
an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such
as ontogenesis, where regulative assets change according to process context and timing, making structural
phenotype and architectural complexities emerge from a single cell, through local interactions. The informa-
tion collected from biological systems are naturally organized according to the functional levels composing
the system itself. In systems biology, biological information often comes from overlapping but different
scientific domains, each one having its own way of representing phenomena under study. That is, the dif-
ferent parts of the system to be modelled may be described with different formalisms. For a model to have
improved accuracy and capability for making a good knowledge base, it is good to comprise different sys-
tem levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy
both these requirements, making a very useful tool in computational systems biology. This paper reviews
some of the main contributions in this field.

© 2017 Published by Elsevier B.V.on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Systems biology considers biological entities as complex holistic
structures whose behaviour cannot be reduced to the linear sum of
the functions of their parts [1]. With the aim of gaining a deeper
insight over biological complexity, computational modelling and
simulation can support the understanding of experimental data, as
well as the capability of generating and testing hypotheses about
them [2]. However, given the huge complexity and peculiar features
of these systems, it is necessary to carefully understand the specific
modelling requirements they pose, in order to define what a good
model for systems biology should look like.

In a complex biological structure, overall features emerge from
local interactions among its sub-parts [3]. These interactions are in
general favoured by the spatial proximity of the sub-parts. Spatial-
ity is therefore one of the biological characteristics that must be
taken into account when modelling biological systems [4]. More
specifically, the probability of two elements to interact is a function
of their spatial proximity and the stochasticity guiding such events
must be explicitly taken into account in the modelling task [5].

Biological systems evolved different strategies to control the
probability of interaction between biological components. One of
them is called compartmentalization [6,7]. Biological systems are
organized in compartments, and boundaries between compartments
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selectively regulate the passage of molecules, thus altering the prob-
ability density over space of molecular encounters. In a model, this
must translate into the capability of expressing encapsulation and
selective communication of each sub-part [8].

Spatial proximity between molecules not always translates into
functional activations. The activation of selected functions, in fact,
may require biochemical interactions between the molecules leading
to structural changes able to alter their functional state. Structural
features of biomolecules are encoded in the genome. Thus, the way
such information is used determines the quality and quantity of
actors and their interactions. The usage of genomic information is
regulated at different levels and by different mechanisms, which
are in flexible hierarchical relations. Such dynamic interplay of
regulations is made of hierarchic relative relations that change
according to the process context. This corresponds to the definition
of epigenetic regulation in its broader sense: everything acting
between a genotype and the corresponding possible phenotypes [9].
Biological models therefore require efficient ways to represent
context-dependent and flexible hierarchies.

The modelling of biological systems should also comprise their
quantitative aspects. Nevertheless, the way this is taken into account
depends on the context. Some biological phenomena fit better
with qualitative and discrete information. In other cases, biological
quantities need to be represented with continuous quantities, for
example referring to molecular concentrations. Therefore, a good
model must be able to handle discrete and continuous variables as
well as qualitative and quantitative information.

In the large variety of problems to be tackled with a systems
biology modelling approach, ontogenetic processes are an example
of how the presented modelling requirements are pushed to an
extreme. Ontogeny takes the individual organism from the stage
of fertilized egg to its fully developed form [10]. This involves a
finely tuned and context-dependent processing of the spatiotem-
poral regulation of the genomic information. In fact, (almost)
all cells in an organism share the same genome, yet they have
different functional specializations and the overall system exhibits
architectural and phenotype diversity. During development, cells
undergo differentiation processes guided by their internal states as
well as by extrinsic signals. Such signals come from other cells,
which are in turn undergoing the same kind of regulations. These
inter-cellular interactions can be mediated by concentration gradi-
ents over space: different relative positions between the sender and
the receiver correspond to different concentration levels determin-
ing different results for the same signal. Depending on the context
of the process (cellular micro-environment, developmental phase,
cell types under analysis, specific regulative state of the cell, etc.)
the different regulatory mechanisms involved in ontogenesis change
their relative hierarchical relations. In turn, this means that some-
times the genetic regulation determines the future epigenetic state
of the cell, other times it is the epigenetic state that determines
the availability of the genomic information required to trigger the
genetic regulations.

2. An introduction to hybrid and multi-level models

As discussed in the introduction, systems biology models in
general must be able to handle different scales of representation,
to model the system and its sub-parts into a complex hierarchical
structure and to handle various types of information represented
with different formalisms.

This review focuses on a particular class of models usually
referred to as multi-level and hybrid models. Multi-level models
describe a system at least at two different levels. Interactions
are taking place within and between those levels [11]. Multi-
level models allow for the explicit representation of “upward” and

“downward” relations. Upward relations model the fact that the
system is somehow constrained by the behaviour of its parts, but at
the same time downward relations model the fact that the behaviour
of each part is influenced by the behaviour of the system as a whole.

When considering multi-level models it is important to make
an explicit distinction between the concept of scale and the
concept of level [12]. More specifically, the concept of scale refers
to a measurable dimension of the analysis of the considered
phenomenon. This dimension can be spatial, temporal, and
quantitative. The spatial dimension refers to the size of the entities
involved in the phenomenon whereas the temporal dimension is
related to the timing associated with the behaviours of these entities
and their interactions. The quantitative dimension instead refers to
the amount of entities involved in the phenomenon. Differently, the
concept of level provides a way to locate the studied phenomenon
and/or the entities involved in a phenomenon along the considered
dimension of the analysis. A level usually corresponds to all the
entities whose size and/or characteristic evolution time have the
same or comparable orders of magnitude. For example, a system
could be represented at the atomic, molecular, cell, organ, population
level.

The concept of multi-level models can be coupled with the
concept of hybrid models. According to Stephanou et al., “in its most
general definition, a hybrid model corresponds to any interaction or
coupling between two or more models that are not based on the
same formalism” [13].

Based on this definition, we define models which are both multi-
level and hybrid as representations supporting different formalisms
and organized in levels encompassing multiple systems scales.

When building up a multi-level and hybrid model, besides
choosing the interesting organizational levels, it is necessary to
choose the formalisms to describe the different components in
the overall model structure. In this sense, it can be useful to
briefly revise the formalisms more often employed in modelling
biological systems, so that their strengths and limitations can be
taken into account when selecting hybrid combinations for the
different organizational levels to be modelled. Fig. 1 summarizes the
set of considered formalisms and their main characteristics. For a
more detailed review of the modelling formalisms used in systems
biology, see [14].

In general, biological systems models can be distinguished into
mathematical and computational ones. “A computational model is a
formal model whose primary semantics is operational; that is, the
model prescribes a sequence of steps or instructions that can be exe-
cuted by an abstract machine, which can be implemented on a real
computer. A mathematical model is a formal model whose primary
semantics is denotational; that is, the model describes by equations
a relationship between quantities and how they change over time.”
[15] However, this separation is not strict. Mathematical models can
be simulated as well, with the only difference that the computational
effort lies into the algorithm chosen to solve the model. One can get
insights from a computational model by executing it, or by analyzing
it by means of tools for model checking. Mathematical models can
instead provide information through formal analysis, but they can be
also simulated and solved.

Both mathematical and computational formalisms can be then
categorized according to similar opposite features: they can be either
qualitative or quantitative, discrete or continuous, deterministic or
stochastic.

Usually, mathematical models are based on systems of equations.
Difference equations are one of the preferred formalisms when mod-
elling the system using discrete terms [16]. Instead, differential
equations are among the preferred formalisms if the model is based
on a representation of continuous biological quantities. Ordinary
Differential Equations (ODE) are in general used whenever only
the temporal aspects of the system are taken into account. Partial
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