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a b s t r a c t

Field-based plant phenomics requires robust crop sensing platforms and data analysis tools to success-
fully identify cultivars that exhibit phenotypes with high agronomic and economic importance. Such
efforts will lead to genetic improvements that maintain high crop yield with concomitant tolerance to
environmental stresses. The objectives of this study were to investigate proximal hyperspectral sensing
with a field spectroradiometer and to compare data analysis approaches for estimating four cotton phe-
notypes: leaf water content (Cw), specific leaf mass (Cm), leaf chlorophyll aþ b content (Cab), and leaf area
index (LAI). Field studies tested 25 Pima cotton cultivars grown under well-watered and water-limited
conditions in central Arizona from 2010 to 2012. Several vegetation indices, including the normalized dif-
ference vegetation index (NDVI), the normalized difference water index (NDWI), and the physiological (or
photochemical) reflectance index (PRI) were compared with partial least squares regression (PLSR)
approaches to estimate the four phenotypes. Additionally, inversion of the PROSAIL plant canopy reflec-
tance model was investigated to estimate phenotypes based on 3.68 billion PROSAIL simulations on a
supercomputer. Phenotypic estimates from each approach were compared with field measurements,
and hierarchical linear mixed modeling was used to identify differences in the estimates among the cul-
tivars and water levels. The PLSR approach performed best and estimated Cw;Cm;Cab, and LAI with root
mean squared errors (RMSEs) between measured and modeled values of 6.8%, 10.9%, 13.1%, and 18.5%,
respectively. Using linear regression with the vegetation indices, no index estimated Cw;Cm;Cab , and
LAI with RMSEs better than 9.6%, 16.9%, 14.2%, and 28.8%, respectively. PROSAIL model inversion could
estimate Cab and LAI with RMSEs of about 16% and 29%, depending on the objective function.
However, the RMSEs for Cw and Cm from PROSAIL model inversion were greater than 30%. Compared
to PLSR, advantages to the physically-based PROSAIL model include its ability to simulate the canopy’s
bidirectional reflectance distribution function (BRDF) and to estimate phenotypes from canopy spectral
reflectance without a training data set. All proximal hyperspectral approaches were able to identify dif-
ferences in phenotypic estimates among the cultivars and irrigation regimes tested during the field stud-
ies. Improvements to these proximal hyperspectral sensing approaches could be realized with a high-
throughput phenotyping platform able to rapidly collect canopy spectral reflectance data from multiple
view angles.

Published by Elsevier B.V.

1. Introduction

To improve food security, adapt to climate change, and reduce
resource requirements for crop production, scientists must better
understand the connection between a plant’s observable character-
istics (phenotype) and its genetic makeup (genotype). Unprece-

dented advances in DNA sequencing have unlocked the genetic
code for many important food crops, including rice (Oryza sativa
L.), sorghum (Sorghum bicolor L.), and maize (Zea mays L.) (Bolger
et al., 2014). However, understanding how genes control complex
plant traits, such as drought tolerance, time to anthesis, and har-
vestable yield, remains challenging. Field-based plant phenomics
seeks to implement information technologies, including sensing
and computing tools in combination with genetic mapping
approaches, to rapidly characterize the physiological responses of
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genetically diverse plant populations in the field and relate these
responses to individual genes (Araus and Cairns, 2014; Furbank
and Tester, 2011; Houle et al., 2010; Montes et al., 2007; White
et al., 2012). When validated, crop improvement strategies based
on targeted quantitative trait loci and genomic selection can be
used for efficient development of crop cultivars that are both high
yielding and resilient to environmental stresses.

A variety of electronic sensors have been deployed for field-
based plant phenomics, mainly on ground-based vehicles.
Andrade-Sanchez et al. (2014) developed a sensing platform on a
high-clearance tractor that collected data over four Pima cotton
(Gossypium barbadense L.) rows simultaneously. Ultrasonic sensors,
infrared radiometers, and active multispectral radiometers were
used to measure canopy height, temperature, and reflectance,
respectively. Scotford and Miller (2004) mounted passive two-
band radiometers and ultrasonic sensors on a tractor boom and
used the system to estimate tiller density and leaf area index
(LAI) of winter wheat (Triticum aestivum L.). Other sensing systems
have incorporated passive hyperspectral radiometers (spectrora-
diometers) for measuring crop canopy spectral reflectance contin-
uously over a range of wavelengths, typically within the visible and
near-infrared spectrum. For example, the phenotyping platform of
Comar et al. (2012) incorporated four spectroradiometers sensitive
between 400 and 1000 nm at 3 nm spectral resolution and two
RGB digital cameras. Also, Montes et al. (2011) developed a system
with light curtains for canopy profiling and spectroradiometers
sensitive between 320 and 1140 nm at 10 nm spectral resolution.
Rundquist et al. (2004) compared machine-based versus hand-
held deployment of a spectroradiometer and found reduced vari-
ability and higher reproducibility of sensor measurements when
the instrument was positioned by a machine.

Following sensor platforms, the next challenge for field-based
plant phenomics is the development of methodologies to extract
meaningful information from the sensor data, with the ultimate
goal to quantify specific crop phenotypes. However, the fundamen-
tal measurements of many sensors have little utility for crop phe-
notyping without additional post-processing and analysis. For
simple, empirical processing of canopy spectral reflectance data,
a multitude of vegetation indices have been developed (Bannari
et al., 1995) and used to estimate several crop characteristics,
including canopy cover, LAI, and biomass (Wanjura and Hatfield,
1987). The popular normalized difference vegetation index (NDVI)
is traditionally calculated as

NDVI ¼ q2 � q1

q2 þ q1
ð1Þ

where q2 is the spectral reflectance in the near-infrared waveband
and q1 is the spectral reflectance in the red waveband. However,
with the advent of hyperspectral sensors, other narrow-band
indices have been developed using the NDVI equation with reflec-
tance data in different wavebands. For example, Gamon et al.
(1992) developed the physiological (or photochemical) reflectance
index (PRI), a narrow-band index using reflectance at 531 nm to
track xanthophyll cycle pigments and estimate photosynthetic effi-
ciency. Likewise, Gao (1996) developed the normalized difference
water index (NDWI) to estimate vegetation water content. Many
other studies have identified optimumwavebands for a given appli-
cation by calculating narrow-band NDVI for all possible waveband
combinations for a given hyperspectral sensor (Fu et al., 2014;
Hansen and Schjoerring, 2003; Thenkabail et al., 2000; Thorp
et al., 2004). Babar et al. (2006) demonstrated several narrow-
band spectral reflectance indices that explained genetic variability
in wheat biomass. Mistele and Schmidhalter (2008) measured spec-
tral reflectance of maize canopies from four view angles and found

the spectral reflectance indices were strongly correlated
(0:57 6 r2 6 0:91) with total nitrogen uptake and dry biomass
weight. In a study by Gutierrez et al. (2012), spectral reflectance
indices explained over 87% and 93% of the variability in biomass
and LAI, respectively, for three upland cotton varieties. Seelig
et al. (2008) correlated shortwave infrared spectral reflectance
indices with relative water content and thickness of peace lily
(Spathiphyllum lynise) leaves (r2 > 0:94).

Other spectral data analysis approaches consider all the visible,
near-infrared, and shortwave infrared wavebands collectively. Sta-
tistical procedures such as principal component regression (PCR)
and partial least squares regression (PLSR) reduce dimensionality
bydecomposing thehyperspectral data intoa set of independent fac-
tors, against which crop biophysical traits are regressed. For exam-
ple, Thorp et al. (2008) used PCR to estimate maize stand density
from aerial hyperspectral imagery (r2 ¼ 0:79). Also, Thorp et al.
(2011)used proximal spectral reflectancedatawithPLSR to estimate
dry biomass weight, flower counts, and silique counts of lesquerella
(Lesquerella fendleri) with root mean squared errors of prediction
equal to 2.1 Mg ha�1, 251 flowers, and 1018 siliques, respectively.
In another study, PLSR models developed from spectral reflectance
of rice canopies explained up to 71% of the variability in plant nitro-
gen (Bajwa, 2006). Hansen and Schjoerring (2003) compared esti-
mates of wheat biophysical variables using (1) linear regression on
narrow-band NDVI with optimal wavebands and (2) PLSR with all
wavebands from 400 to 900 nm. The NDVI approach better esti-
mated LAI and chlorophyll concentration, while the PLSR approach
better estimated green biomass weight and nitrogen concentration.

Another potential solution for quantifying crop phenotypes
involves combining measured spectral reflectance data with phys-
ical models of radiative transfer in the plant canopy. Input param-
eters for such models describe attributes (i.e., phenotypes) of the
crop canopy, which are used to simulate canopy spectral reflec-
tance. For example, with 14 input parameters that describe plant
characteristics and illumination conditions, the PROSAIL model
(Jacquemoud et al., 2009) can simulate plant canopy spectral
reflectance from 400 to 2500 nm in 1 nm wavebands. Using model
inversion techniques, spectral reflectance measurements from
spectroradiometers can be used to estimate PROSAIL input param-
eters. These estimates represent additional crop phenotypes that
could be useful in subsequent genetic analyses. By linking crop
phenotypes to sensor data through the theoretical knowledge con-
tained in the simulation model, the approach is less empirical than
the vegetation index and PLSR approaches.

Literature provides examples of PROSAIL model inversion for
vegetation characterization in diverse environments, but field-
based plant phenomics is a novel application. Jacquemoud (1993)
first investigated the practical limitations of PROSAIL model inver-
sion using synthetic spectra. A subsequent study tested field spec-
troradiometer data with PROSAIL model inversion to retrieve sugar
beet (Beta vulgaris) canopy characteristics, such as chlorophyll
aþ b concentration, leaf water thickness, LAI, and leaf inclination
angle (Jacquemoud et al., 1995). At coarser spatial and spectral
scales, Zarco-Tejada et al. (2003) used data from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) satellite to invert
PROSAIL for estimation of chaparral vegetation water content in
a central California shrub land. Yang and Ling (2004) estimated leaf
water thickness of New Guinea impatiens (Impatiens hawkeri) in a
controlled environment using PROSAIL model inversion from
1300 nm to 2500 nm, but spectral artifacts between 400 and
1300 nm due to artificial lighting prevented the estimation of other
plant characteristics. PROSAIL model inversion also provided esti-
mates of LAI and chlorophyll aþ b concentration for potato (Sola-
num tuberosum L.) and wheat managed with variable nitrogen
fertilization rates (Botha et al., 2007, 2010). Others have linked
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