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a b s t r a c t

We prove a strong approximation result for functions u ∈ W 1,∞(Ω \ J), where J is the
union of finitely many Lipschitz graphs satisfying some further technical assumptions. We
approximate J by a polyhedral set in such a manner that a regularisation term η(Divj ui),
(i = 0, 1, 2, . . .), is convergent. The boundedness of this regularisation functional itself,
introduced in [T. Valkonen, Transport equation and image interpolation with SBD velocity
fields, J. Math. Pures Appl. 95 (2011) 459–494. doi:10.1016/j.matpur.2010.10.010] ensures
the convergence in total variation of the jump part Divjui of the distributional divergence.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let u ∈ SBV(Ω) be a special function of bounded variation on the domain Ω ⊂ Rm. We would like to approximate u
by a sequence of functions {ui

}
∞

i=0 such that ui is reasonably smooth in Ω \ Jui , (i = 0, 1, 2, . . .), andJui is a polyhedral
(m − 1)-dimensional set, containing the jump set Jui . As the novelty of our results, we would like convergence from
a regularisation term η(Divj ui), introduced in [1]. The boundedness of this term ensures that if Divj ui ∗

⇀Divj u and
|Divj ui

|
∗

⇀λ, then λ = |Divj u|. The notation Divj u here stands for the ‘‘jump part’’ of the distributional divergence Div u,
while the absolutely continuous part will be denoted by div u.

Why do we want this kind of strong approximation property? In [1] we studied an extension of the transport equation
involving ‘‘jump sources and sinks’’. With u = (1, b) the velocity field and I the space–time data being transported, it can
be stated as

Div(Iu)− Idiv u − τDivj u = 0 (1)

for some τ defined on the jump set of u, modelling the sources and sinks. To show the stability of (1) with {I i}∞i=0 converging
weakly in BV(Ω) and {ui

}
∞

i=0 converging as in the SBV/SBD compactness theorems [2,3], we needed to further assume that
|Divj ui

|(Ω) → |Divju|(Ω). To use (1) as a constraint in an optimisation problem (specifically, image interpolation), we thus
had to introduce the regularisation term η(Divj ui) ensuring this convergence. One possibility for the definition is

η(µ) :=

∞
ℓ=0


|µ|(Ω)− 2−ℓm


Rm

|µ(x + [0, 2−ℓ
]
m)| dx


, (µ ∈ M(Ω)). (2)

Roughly η(µ) < ∞ says that on average the differences 2−ℓm(|µ|(x + [0, 2−ℓ
]
m) − |µ(x + [0, 2−ℓ

]
m)|) go to zero as the

scale 2−ℓ becomes smaller. Thus on small sets |µ| is close to µ.
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The problem then becomes: canwe, at least in principle, numerically solve problems involving such regularisation terms?
That is, can we in particular construct a sequence of discretizations of u such that η(Divj ui) → η(Divj u) along with the
standard convergences ui

→ u and ∇ui
→ ∇u in L2,Djui

→ Dju weakly∗, and Hm−1( Jui) → Hm−1( Ju)? In the present
work, we intend to provide a partial answer. Specifically, we restrict our attention to functions u ∈ W 1,∞(Ω \Ju), whereJu is
the union of finitelymany Lipschitz graphswith bounded variation gradientmapping, satisfying further technical conditions,
given in Definition 8. Assuming these conditions, we show that u can be approximated by functions ui

∈ W 1,∞(Ω \Jui)withJui polyhedral and satisfying Definition 8. Some of our proof techniques resemble those of the SBD approximation theorem
of Chambolle [4,5]. In SBV a counterpart approximation theorem is proved by quite different techniques by Cortesani and
Toader [6]. Their result provides largely similar convergence properties as ours, but is missing the crucial convergence of
η(Divj ui). Of course, the class of functions that we are able to study at the moment is significantly smaller. Finally, we also
study anisotropic approximation withJui restricted to lie on translations of the coordinate planes.

We have organised this paper as follows. First, in Section 2, we introduce notation and some other well-known tools.
In Section 3 we study the functional η, and estimates for bounding it. As a consequence we also obtain some new SBV
compactness results. In Section 4 we provide a series of further technical lemmas of general nature, needed to prove the
approximation theorem. In the subsequent Section 5we then introduce in detail the spacewhere the approximated function
u lies in, and provide further technical lemmas regarding the covering of the boundary of the jump set by cubes. Our main
approximation theorem is then stated and proved in Section 6. Finally, we study anisotropic approximation in Section 7.

2. Preliminaries

2.1. Sets and functions

We denote the unit sphere in Rm by Sm−1, while the open ball of radius ρ centred at x ∈ Rm we denote by B(x, ρ). The
boundary of a set A is denoted ∂A, and the closure by cl A.

For ν ∈ Rm, the hyperplane orthogonal to ν we denote by ν⊥
:= {z ∈ Rm

| ⟨ν, z⟩ = 0}. Pν denotes the projection onto
the subspace spanned by ν, and P⊥

ν the projection onto ν⊥.
We denote by {e1, . . . , em} the standard basis of Rm.
The k-dimensional Jacobian of a linear map L : Rk

→ Rm, (k ≤ m), is defined as Jk[L] :=
√
det(L∗ ◦ L).

A set Γ ⊂ Rm is a called a Lipschitz d-graph (of Lipschitz factor L), if there exist a unit vector zΓ , an open set VΓ on a
d-dimensional subspace of z⊥

Γ , and a Lipschitz map gΓ : VΓ → Rm of Lipschitz factor at most L, such that

Γ = {y ∈ Rm
| gΓ (v) = y, v = P⊥

zΓ y ∈ VΓ }.

We say that Γ is polyhedral if gΓ is piecewise affine and VΓ is a polyhedral set, i.e., consists of finitely many simplices. If gΓ
is further affine, we say that Γ is affine. We define the boundary as ∂Γ := gΓ (∂VΓ ).

Remark 1. Consider the situation d = m − 1. If Γ is the graph of f : U ⊂ Rm−1
→ R, then gΓ (v) = (x, f (x)) for

v = (x, 0) ∈ VΓ = U × {0}. More generally, if VΓ ⊂ z⊥
Γ for some zΓ ∈ Rm, and f : VΓ → R is Lipschitz map, then

gΓ (v) = v + zΓ f (v) defines a Lipschitz graph. Conversely, if Γ is a Lipschitz graph per the above definition, then defining
fΓ (v) := ⟨gΓ (v), zΓ ⟩ for v ∈ VΓ , we obtain the more conventional description

Γ = {v + fΓ (v)zΓ | v ∈ VΓ }.

For our purposes it is more convenient to work with the map gΓ , however.

2.2. Measures

The space of (signed) Radon measures on an open set Ω is denoted M(Ω). If V is a vector space, then the space of
V -valued Radon measures on Ω is denoted M(Ω; V ). The k-dimensional Hausdorff measure, on any given ambient space
Rm, (k ≤ m), is denoted by Hk, while Lm denotes the Lebesgue measure on Rm. For a measureµ and a measurable set A, we
denote by µx A the restriction measure defined by (µx A)(B) := µ(A ∩ B). The total variation measure of µ is denoted |µ|.
For a Borel map u : Ω → R we denote µ(u) :=


Ω
u dµ.

A measure µ ∈ M(Ω) is said to be Ahlfors-regular (in dimension d), if there existsM ∈ (0,∞) such that

M−1rd ≤ |µ|(B(x, r)) ≤ Mrd for all r > 0 and x ∈ suppµ.

If only the first or the second inequality holds, then µ is said to be, respectively, lower or upper Ahlfors-regular.
We will often refer to the following standard result on weak∗ convergence. (See, e.g., [7, Proposition 1.62].)

Proposition 1. Let µi
∈ M(Ω), (i = 0, 1, 2, . . .), be such that µi ∗

⇀µ ∈ M(Ω), and |µi
|

∗

⇀λ ∈ M(Ω). If E is a relatively
compact µ-measurable set such that λ(∂E) = 0, then µi(E) → µ(E). More generally, let u : Ω → R be any compactly
supported Borel function, and denote by Ef the set of its discontinuity points. Then, if λ(Ef ) = 0, we have


Ω
u dµi

→

Ω
u dµ.
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