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a b s t r a c t

This paper deals with the formation of singularities of rough blow-up solutions to the
fourth-order nonlinear Schrödinger equation. The limiting profile and L2-concentration of
the rough blow-up solutions are obtained in Hs(R4) with s > s0, where s0 ≤

9+
√
721

20 ≈

1.793. The new ingredient relies on the refined compactness result developed by Zhu et al.
[S.H. Zhu, J. Zhang, H. Yang, Limiting profile of the blow-up solutions for the fourth-order
nonlinear Schrödinger equation, Dyn. Partial Differ. Equ. 7 (2010) 187–205].
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1. Introduction

In this paper, we study the Cauchy problem of the following fourth-order nonlinear Schrödinger equation

iut −∆2u + |u|2u = 0, t ≥ 0, x ∈ R4, (1.1)
u(0, x) = u0, (1.2)

where i =
√

−1; ∆2
= ∆∆ is the biharmonic operator defined in R4 and ∆ =

∑4
j=1

∂2

∂x2j
is the Laplace operator in R4;

u = u(t, x): [0, T ∗)× R4
→ C is the complex valued function and 0 < T ∗

≤ +∞. Fourth-order Schrödinger equations are
introduced by Karpman [1], Karpman and Shagalov [2] to take into account the role of small fourth-order dispersion terms
in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity, and such fourth-order Schrödinger
equations are written as

iφt + ε∆2φ + µ∆φ + |φ|
p−1φ = 0, φ = φ(t, x) : I × Rd

→ C, (1.3)
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where ε and µ are two parameters, d is the space dimension. Note that Eq. (1.1) is a special case of Eq. (1.3) by taking
ε = −1, µ = 0 and p = 1 +

8
d = 3. Eq. (1.1) is called the mass-critical due to the mass M(u) =


R4 |u(t, x)|2dx and the

equation itself are invariant under the rescaling symmetry u → λ2u(λ4t, λx).
We recall some known results for the classical focusing mass-critical nonlinear Schrödinger equation

ivt +∆v + |v|
4
d v = 0, v(0, x) = ϕ, (1.4)

where v = v(t, x) : I × Rd
→ C. Ginibre and Velo [3] showed the local well-posedness in H1(Rd). In this space energy

arguments apply, and a blow-up theory has been developed in the last two decades (see [4–6] and the references therein).
On the other hand, Cazenave [4] established the local well posedness in Hs(Rd) with 0 ≤ s < 1. In this space, the energy
arguments fail and studying the rough blow-up solutions is more difficult and interesting. Recently, many researchers are
attracted to study the qualitative properties of blow-up solutions in lower regular spaceHs(Rd)with 0 ≤ s < 1 (see [7–12]).
Combining the harmonic techniques with variational characteristic of the ground state, Colliander et al. [8] firstly obtained
the mass concentration properties of the radially symmetric blow-up solutions in Hs(R2) with 1 > s > 1+

√
11

5 . Hmidi and
Keraani [10] extended this result to the general blow-up solutions. Tzirakis [13] obtained the analogue results in Hs(R1)
with 1 > s > 10

11 . Visan and Zhang [12] extended Colliander et al.’s results [8] to the general blow-up solutions in dimension
d ≥ 3 for some 1 > s > s0. For ϕ ∈ L2(R2), Bourgain [14] showed that some small amount of mass must concentrate in
parabolic windows (at least along a subsequence). Keraani [15], Bégout and Vargas [16], Chae et al. [17] extended Bourgain’s
results [14] to d = 1 and d ≥ 3.

In Eq. (1.1), if one replaces the nonlinearity |u|2u with |u|p−1u, it is a class of semilinear fourth-order Schrödinger
equations similar to Eq. (1.1), which has been widely investigated. For 1 < p < 2d

(d−4)+ (we use the convention: 2d
(d−4)+ =

+∞ when d ≤ 4 and 2d
(d−4)+ =

2d
d−4 when d > 4), Ben-Artzi et al. [18] established the local well-posedness in H2(Rd).

Fibich et al. [19] obtained the general results of global well-posedness in H2(Rd). Pausader [20] and Segata [21] studied
the global well-posedness and scattering of the fourth-order nonlinear Schrödinger equation with cubic nonlinearity. For
p =

2d
d−4 , Miao et al. [22], Pausader [23] studied the global existence and scattering of the focusing fourth-order nonlinear

Schrödinger equation; Miao et al. [24], Pausader [25] studied the global existence and scattering of the defocusing fourth-
order nonlinear Schrödinger equation. The above studies focused on global solutions.

In the present paper, we study the limiting profile and L2-concentration of blow-up solutions to the Cauchy problem
(1.1)–(1.2) in Hs

:= Hs(R4) with 0 < s < 2. We first recall some known results for the Cauchy problem (1.1)–(1.2) in
H2

:= H2(R4). Kenig et al. [26], Ben-Artzi et al. [18], Pausader [25] established the local well-posedness in H2. Moreover, for
the solution u(t, x) of the Cauchy problem (1.1)–(1.2), there are two conservation laws in H2:

(i) Conservation of mass∫
R4

|u(t, x)|2dx =

∫
R4

|u0|
2dx. (1.5)

(ii) Conservation of energy

E(u(t)) :=
1
2

∫
R4

|∆u(t, x)|2dx −
1
4

∫
R4

|u(t, x)|4dx = E(u0). (1.6)

On the other hand, we mean a special periodic solution of Eq. (1.1) in the form u(t, x) = Q (x)e−it by the standing wave. It
is easy to check that Q (x) satisfies

∆2Q + Q − |Q |
2Q = 0, Q ∈ H2, (1.7)

and Q is called the ground state of Eq. (1.7) (see [19]). Zhu et al. [27] showed the existence of the ground state of Eq. (1.7).
Levandosky [28] discussed the stability of the standing waves. Fibich et al. [19] showed some numerical observations of the
solution to the Cauchy problem (1.1)–(1.2), which implies that if the initial data ‖u0‖L2 < ‖Q‖L2 , then the solution u(t, x)
exists globally; if the initial data ‖u0‖L2 ≥ ‖Q‖L2 , then the solution u(t, x)may blow up in finite time. Because of the effect
of fourth-order dispersion ∆2u, whether the variance identity arguments can be extended to show the existence of blow-
up solutions for the fourth-order nonlinear Schrödinger equation is still unknown (see [29,19]). However, the numerical
observations in [19] showed the existence of blow-up solutions. Baruch et al. [29], Zhu et al. [27] showed some dynamical
properties of the blow-up solutions in the energy space H2, such as blow-up rate, L2-concentration and limiting profile.
Meanwhile, Zhu et al. [27] obtained a refined compactness result, which is of particular significance to study the dynamical
properties of blow-up solutions to fourth-order nonlinear Schrödinger equations.

Theorem 1.1. Let d = 4 and {vn}
+∞

n=1 be a bounded sequence in H2 such that

lim
n→+∞

sup ‖∆vn‖L2 ≤ M and lim
n→+∞

sup ‖vn‖L4 ≥ m. (1.8)
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