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a b s t r a c t

This paper reports on the validation of a simplified discharge prediction model that is suitable for imple-
mentation on a resourced constrained system such as a wireless sensor network, which will allow their
operation to become more proactive rather than reactive. The data-driven model, utilising an M5 decision
tree modelling technique, is validated using a 12-month training data set derived from published mea-
sured data. Daily runoff and drainage is predicted, and the results are compared with existing data-
driven models developed in this domain. Results for the model give an R2 of 0.82 and Root Relative
Mean Square Error (RRMSE) of 35.9%. 80% of the residuals for the predicted test values fall within a
±2 mm discharge depth/day error range. The main significance is that the proposed model gives compa-
rable results with fewer samples and simpler parameters when compared to previous published research,
which offers the potential for implementation in resource constrained monitoring and control systems.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over recent years, wireless sensor networks (WSNs), with their
attractions of low cost and real time data availability, have
received considerable attention in automating agricultural pro-
cesses for economic benefits, e.g. in precision irrigation, pest con-
trol, and animal farming. However, a research gap still exists for
mechanizing reutilization of resources (water and nutrients)
amongst farms in order to additionally maximise environmental
benefits. There is huge potential for leveraging existing networked
agricultural activities into an integrated mechanism by sharing
information about discharges (Zia et al., 2013). To illustrate this
consider that the most commonly used irrigation method, surface
irrigation, results in 40–60% of water losses in the form of runoff
(Eisenhauer, 2011; Tindula et al., 2013). This runoff can transport
up to 30–50% of applied nutrients to stream water and rivers (Liu
et al., 2003) In the light of these figures, the motivation for this
work is to develop a system that can potentially reduce water
consumption and reduce outflows from farms, by predicting and
monitoring discharge from local areas. This will enable the devel-
opment of systems that can then proactively control irrigation
strategies and also implement drainage reuse. This will also lead
to improved water quality as it will allow nutrients to be kept in

the place where they can be useful where previously they would
have been discharged with no control into the local environment,
eventually ending up in the streams and rivers. While drainage
reuse has been advocated and adopted in farming (Adelman,
2000; Willardson et al., 1997; Harper, 2012), various resource con-
straints and farmer’s concerns regarding real time availability of
information on volumes, timings, and quality of discharges that
will be delivered to the farms (Carr et al., 2011; Oster and
Grattan, 2002), currently restricts wide adoption of this mecha-
nism in agriculture.

To address some of these issues, we have previously proposed a
framework for water quality monitoring control and management
(WQMCM) using collaborative WSNs in a catchment to investigate
and enable such a mechanism (Zia et al., 2014a). The basic system
architecture comprises various modules, one of which is a dis-
charge prediction module (Q-predictive model). The validation of
this model using field data from an instrumented catchment is
the subject of this paper. Although previous work on the
Q-predictive model has shown that it works well with simulated
data (Zia et al., 2014b), this paper extends this by reporting on
the validation of the model with field data from an instrumented
catchment, and comparing its performance with other published
models.

To date, numerous physically-based hydrological models have
been developed for the prediction of discharges, either measured
as surface runoff, groundwater leaching or stream-flow. Although
these models are popular in academic research and are very
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useful in evaluating different scenarios, their dependence on
acquiring numerous parameters, the need for calibrating models
to individual areas, and the tremendous computational burden
involved in running the models makes wide-spread application
complicated and difficult (Basha et al., 2008; Galelli and
Castelletti, 2013). In contrast, data-driven models have good
prediction capability and require fewer parameters, which is con-
sistent with the requirement for a reduction in the computational
burden of decision making (Castelletti et al., 2010). Thus data-
driven modelling, using machine learning algorithms, has been
widely used in hydrological modelling (Wilby et al., 2003;
Rasouli et al., 2012; Solomatine and Ostfeld, 2008) with artificial
neural networks (ANN) being a popular choice (Dawson and
Wilby, 1998; Minns and Hall, 1996; Wilby et al., 2003). Recently,
decision tree modelling has been investigated (Galelli and
Castelletti, 2013; Villa-Vialaneix et al., 2012; Fortin et al., 2014;
Piñeros Garcet et al., 2006; Kuzmanovski, 2012) and an interest-
ing example of this class are M5 model trees (Quinlan, 1992).
The advantage of M5 model trees over ANNs are that they are fas-
ter to train and have guaranteed convergence (Solomatine and
Dulal, 2003). However, there are two limitations in the existing
work; either the existing models use simpler parameters but
years of historical data with thousands of training samples to
learn the heterogeneity of large areas (>1000 ha) (Galelli and
Castelletti, 2013; Solomatine and Xue, 2004a), or they use more
complex models with a significant number of parameters
(Bhattacharya et al., 2005; Kuzmanovski, 2012). Additionally none
of these approaches have been specifically targeted at sensor
network applications, and the data used was obtained through
traditional sampling methods in gauged catchments.

This highlights one of the main issues in that the historical
data sets needed to develop these predictive models do not
exist for every farm, and even for most catchments. In addition,
the strengths of a WSN deployment (fine spatial and temporal
measurements of dynamic parameters) requires a simplified
underlying physical model, and a simple machine learning
model based on fewer and, ideally, real-time field parameters
acquired autonomously and shareable across neighbouring
farms. Thus there is a requirement for a discharge predictive
model, which takes into account field conditions (soil moisture,
vegetation cover) of the farms and the drainage networks, and
which could be generated with adequate performance using
fewer training samples. Such a model, once implemented in
the network, can adaptively learn and further improve its accu-
racy over the course of time.

In this paper, we recap the model simplification for the pre-
dictive model for completeness, as already proposed by Zia
et al. (2013), which is based on (but not restricted to) the pop-
ular National Resource Conservation Method (NRCS curve num-
ber model). Furthermore, we explore the applicability of M5
decision trees, for discharge modelling based on the proposed
parameters. A year-long dataset (200 event samples) consisting
of daily values for precipitation, field conditions (soil moisture,
vegetation cover) and discharges, obtained from a grassland
catchment in Ireland is used for training and testing the model.
Specifically, an assessment procedure with the following steps is
used (i) evaluation of optimized input parameter combinations
with optimal performance; (ii) random sampling of the observa-
tional dataset to ensure a robust evaluation of the model perfor-
mance, and the use of 10-fold cross validation to avoid over
fitting of the model; (iii) assessment of the model performance
against selected criteria; (iv) uncertainty analysis on the model
residuals; and (v) comparative assessment of the prediction
accuracy against other similar research developed using M5 deci-
sion trees.

2. Experimental method

2.1. Specification of catchment data

The University of Cork carried out a study on the Dripsey catch-
ment in the south of Ireland. The one-year study (2002) was aimed
at understanding the underlying processes of nutrient loss from
soil to water bodies within the catchment (Lewis, 2003) and thus
fits the requirement for validating the Q-predictive model. This
catchment consists of smaller nested sub-catchments. Fig. 1(a)
shows the location of various data collection points in the stream
network such as site 1, site 3 and site 4, which collect water
drained from their associated sub-catchments. For the develop-
ment of the Q-predictive model, data available for site 1 of the
stream network is used. The sub-catchment which drains into this
stream location is identified as ‘catchment 1’ (as shown in Fig. 1(a))
consisting of 17 ha of farmland. Precipitation (mm) and stream
flow (mm) data, collected every 30 min for the year 2002 is used.
The data is publically available for research and education pur-
poses via the Environmental Protection Agency (EPA) website
(Keily, 2003). The remainder of the data regarding field conditions
is extracted from catchment descriptors available in the associated
documentation (Lewis, 2003).

For catchment 1, the cumulative rainfall for the year 2002 was
1812 mm. The cumulative stream flow depth measured, at site 1,
was 1206 mm of the rainfall (as shown in Fig. 1(c)). Stream flow
here consists of water passing this point that originated as any
surface runoff, sub-surface drainage or deeper groundwater contri-
butions by catchment 1 (Khandokar, 2003). The monthly rainfall
value ranges from less than 50 mm in the summer months to more
than 250 mm in the winter months. The mean monthly tempera-
ture is 5 �C in the winter and 15 �C in the summer. The concentra-
tions of total oxidised nitrate losses range from 0.5 to 6.5 mg l�1.
Land cover in the sub-catchment is dominated by agricultural
grassland of high quality pasture and meadows. The growing sea-
son in Ireland is weather-dependant but generally summer-
dominant, starting in early March and finishing in October. Grass
is also cut as silage once or twice a year, typically at the end of
May and at the end of July.

2.2. Modelling technique – M5 decision tree

With WSNs, it is now possible to obtain real time field data,
which presents an opportunity for the development of simpler
and more accurate data-driven models. These methods are based
on the analysis of the data (of some simplified parameters) which
characterises the system under study, thereby building models of
physical processes. These models can complement or replace the
knowledge-driven models describing behaviour of physical
systems, and therefore can yield low computational complexity,
making them well-suited for implementation on a resource con-
strained network.

As discussed in the introduction, decision tree modelling,
specifically, is receiving increasing attention in the hydrological lit-
erature, in comparison to other learning models. Decision tree
modelling is a method of approximating a target variable (output),
with discrete values, from a given data set and represents the
learned function in form of a decision tree (Mitchell, 1999), where
each leaf contains the target values. Decision trees have been
shown to perform well when compared to other model types
(Galelli and Castelletti, 2013; Zhao and Zhang, 2008) but they do
have one disadvantage. In decision trees, the predicted output is
composed of discrete values and is reconstructed as a piecewise
constant function. To ensure good prediction accuracy, the number
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