

Contents lists available at ScienceDirect

Nonlinear Analysis

Stably average shadowable homoclinic classes

Manseob Lee*

Department of Mathematics, Mokwon University, Daejeon, 302-729, Republic of Korea

ARTICLE INFO

Article history: Received 27 April 2010 Accepted 14 September 2010

MSC: 37C50 37D20 37C29

37C25

Keywords:
Average shadowing

Pseudo-orbit Hyperbolic Homoclinic class Stably hyperbolic

ABSTRACT

Let p be a hyperbolic periodic saddle of a diffeomorphism of f on a closed smooth manifold M, and let $H_f(p)$ be the homoclinic class of f containing p. In this paper, we show that if $H_f(p)$ is locally maximal and every hyperbolic periodic point in $H_f(p)$ is uniformly far away from being nonhyperbolic, and $H_f(p)$ has the average shadowing property, then $H_f(p)$ is hyperbolic.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It has been a main aim, as regards differentiable dynamical systems, for the last few decades, to understand the influence of a robust dynamic property on the behavior of the tangent map of the system. For instance, Mañé [3] proved that any robustly transitive diffeomorphism f of a closed surface S is an Anosov diffeomorphism. To study this problem, some people try to understand the influence of a robust dynamic property in systems with some shadowing properties, since these shadowing properties are closely related to the stability of systems (see [1,2,4–7]).

In this paper, we introduce the notion of the C^1 -stably average shadowing property, and study the case where the homoclinic class has the stably average shadowing property.

Let us pass to the main definitions and results. Let M be a closed C^{∞} Riemannian manifold. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. Let $\mathrm{Diff}(M)$ be the space of diffeomorphisms of M endowed with the C^1 -topology. Let $f: M \to M$ be a diffeomorphism. For $\delta > 0$, a sequence of points $\{x_i\}_{i=a}^b \ (-\infty \le a < b \le \infty)$ in M is called a δ -pseudo-orbit of f if

$$d(f(x_i), x_{i+1}) < \delta$$

for all $a \le i \le b-1$. For $\delta > 0$ a sequence $\{x_i\}_{i=-\infty}^{\infty}$ in M is called a δ -average pseudo-orbit of $f \in \text{Diff}(M)$ if there is a natural number $N = N(\delta) > 0$ such that for all $n \ge N$, and $k \in \mathbb{Z}$,

$$\frac{1}{n}\sum_{i=1}^{n}d(f(x_{i+k}),x_{i+k+1})<\delta.$$

^{*} Tel.: +82 42 829 7600; fax: +82 42 829 7600. E-mail address: lmsds@mokwon.ac.kr.

It is easy to see that a δ -pseudo-orbit is always a δ -average pseudo-orbit. We say that f has the average shadowing property or is average shadowable if for every $\epsilon > 0$ there is a $\delta > 0$ such that every δ -average pseudo-orbit $\{x_i\}_{i=-\infty}^{\infty}$ is ϵ -shadowed in average by some $z \in M$, that is,

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{i=1}^n d(f^i(z),x_i)<\epsilon.$$

Let $\Lambda \subset M$ be a closed f-invariant set. We say that $f|_{\Lambda}$ has the average shadowing property if for every $\epsilon > 0$ there is a $\delta > 0$ such that any δ -average pseudo-orbit $\{x_i\}_{i=a}^b \subset \Lambda$ of f is ϵ -shadowed in average by some $z \in \Lambda$.

Let $f \in \text{Diff}(M)$, and let $\Lambda \subset M$ be a closed f-invariant set. We say that Λ is locally maximal if there is a compact neighborhood U of Λ such that

$$\bigcap_{n\in\mathbb{Z}}f^n(U)=\Lambda(U).$$

Note that f has the average shadowing property if and only if f^n has the average shadowing property for n > 0. It is well known that if p is a hyperbolic periodic point f with period k then the sets

$$W^s(p) = \{x \in M : f^{kn}(x) \to p \text{ as } n \to \infty\}$$

and

$$W^{u}(p) = \{x \in M : f^{-kn}(x) \to p \text{ as } n \to \infty\}$$

are C^1 -injectively immersed submanifolds of M.

Every point in the set $W^s(p) \cap W^u(p)$ is called a homoclinic point of f. The closure of the homoclinic points of f associated with p is called the *homoclinic class* of f and it is denoted by $H_f(p)$:

$$H_f(p) = \overline{W^s(p)} \overline{\pitchfork} W^u(p).$$

Let $\Lambda \subset M$ be an f-invariant closed set. We say that Λ admits a dominated splitting if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $T_A M = E^s \oplus E^u$, and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E(x)}|| \cdot ||D_x f^{-n}|_{F(f^n(x))}|| \le C\lambda^n$$

for all $x \in \Lambda$ and $n \ge 0$.

Remark 1.1. An equivalent statement is the following: There are constants m > 0 and $\lambda \in (0, 1)$ such that

$$||Df^m|_{E(x)}||/m(Df^m|_{E(x)}) < \lambda^2,$$

for every $x \in \Lambda$.

We say that Λ is hyperbolic if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0and $0 < \lambda < 1$ such that $||D_x f^n|_{E_v^s}|| \le C\lambda^n$ and $||D_x f^{-n}|_{E_v^u}|| \le C\lambda^{-n}$ for all $x \in \Lambda$ and $n \ge 0$.

In the article, we prove the following conclusion:

Theorem A. Suppose the homoclinic class $H_f(p)$ is locally maximal and satisfies the following properties:

- (a) $H_f(p)$ admits a dominated splitting $T_{H_f(p)}M=E\oplus F$ with $\dim E=\dim W^s(p)$, (b) there are constants K>0, m>0, $0<\lambda<1$ such that if $q\in H_f(p)$ has minimum period $\pi(q)\geq m$, then

$$\prod_{i=0}^{k-1} \|D_{f^{im}(q)}f^m|_{E^s|_{f^{im}(q)}}\| < K\lambda^k \quad and \quad \prod_{i=0}^{k-1} \|D_{f^{-im}(q)}f^m|_{E^u|_{f^{-im}(q)}}\| < K\lambda^k,$$

where $k = [\pi(q)/m]$,

(c) f has the average shadowing property on $H_f(p)$;

then $H_f(p)$ is hyperbolic for f.

Actually, the above theorem comes from the consideration of the so-called C^1 -stably average shadowable homoclinic class.

Definition 1.2. Let Λ be a closed f-invariant set. We say that an $f \in Diff(M)$ has the C^1 -stably average shadowing property on Λ or Λ is C^1 -stably average shadowable if there exist a C^1 -neighborhood $\mathcal{U}(f)$ of f and a compact neighborhood U of Λ such that:

- (i) $\Lambda(U) = \bigcap_{n \in \mathbb{Z}} f^n(U)$, i.e., Λ is locally maximal;
- (ii) for any $g \in \mathcal{U}(f)$, $g|_{\Lambda_g(U)}$ has the average shadowing property, where $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$, which is called the continuation of $\Lambda(U)$.

Download English Version:

https://daneshyari.com/en/article/841069

Download Persian Version:

https://daneshyari.com/article/841069

<u>Daneshyari.com</u>