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a b s t r a c t

Leaf area index (LAI) is an important input parameter for biogeochemical and ecosystem process models.
Mapping LAI using remotely sensed data has been a major objective in remote sensing research to date.
However, the current LAI product mapped by remote sensing is both spatially and temporally discontin-
uous as a result of cloud cover, seasonal snows, and instrumental constraints. This has limited the appli-
cation of LAI to ground surface process simulations, climatic modeling, and global change research. To fill
these gaps in LAI products, this study develops an algorithm to provide high spatial and temporal reso-
lution LAI products with synthetic Landsat data, generated by a spatial and temporal data fusion model
(STDFA). The model has been developed and validated within the Changping District of Beijing, China.
Using Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data and real Landsat data,
this method can generate LAI data whose spatial (temporal) resolution is the same as that of the
Landsat (MODIS) data. Linear regression analysis was performed to compare the modeled data with
field-measured LAI data, and indicates that this new method can provide accurate estimates of LAI, with
R2 equal to 0.977 and root mean square error (RMSE) equal to 0.1585 m2 m�2 (P < 0.005), which is supe-
rior to the standard MODIS LAI product. Further, various STDFA model application strategies were tested,
with the results showing that the application strategy of the STDFA model has an important influence on
the accuracy of LAI estimation: the vegetation index fusion strategy produced a better result than the
reflectance fusion strategy. The applications of the STDFA model to eight commonly used vegetation
indices were also compared. The results show that some vegetation indices (e.g., Enhanced Vegetation
Index (EVI), Normalized difference vegetation index (NDVI), and Normalized difference infrared index
(NDII)) exhibited better performance than others (e.g., Infrared simple ratio (ISR), Reduced infrared sim-
ple ratio (RISR), Reduced normalized difference vegetation Index (RNDVI), Reduced simple ratio (RSR),
and Simple ratio (SR)). However, ISR, RISR, and NDII data produced lower saturation effects than other
spectral vegetation indices in the estimation of LAI values higher than 2 m2 m�2.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Biogeochemical and ecosystem process models are increasingly
run in a spatially explicit mode, requiring model drivers in the
form of multi-scale and multi-data biogeophysical parameters,
such as leaf area index (LAI), which are derived mainly from satel-
lite imagery (Running et al., 1999; Cohen et al., 2003; Gonsamo and
Pellikka, 2012). As a key parameter of ecosystem processes, leaf
area index has attracted considerable attention (Weiss et al.,
2004), and mapping LAI using remotely sensed data has been a

major objective of remote sensing research (Soudani et al., 2006;
Song and Dickinson, 2008). For example, a LAI product is currently
provided based on observations acquired by the Moderate
Resolution Imaging Spectroradiometer (MODIS) instruments
aboard NASA’s Terra and Aqua satellites (Maire et al., 2011;
Zhang et al., 2012; Leonenko and Los, 2013).

There are two methods for mapping LAI using remotely sensed
data. One is through the inversion of canopy reflectance models
(Myneni et al., 1997; Knyazikhin et al., 1998; Peddle et al., 2004;
Duan et al., 2014). Inversion methods have a firm physical founda-
tion and can be applied across large areas, as they are not restricted
by biome type. However, such methods are usually difficult to
parameterize and may be mathematically ill-posed, in that their
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solutions may not be unique (Gray and Song, 2012). The second
method, which is perhaps the most commonly employed, involves
the development of empirical relationships between single spectral
vegetation indices (SVIs) and ground-based LAI (Cohen et al., 2003;
Wu et al., 2007; Hasegawa et al., 2010; Viña et al., 2011;
Zarate-Valdez et al., 2012; Li and Wang, 2013). Among these, the
normalized difference vegetation index (NDVI) is the most com-
monly used index for mapping LAI (Chen and Cihlar, 1996).
Regression analysis is usually used to link field-measured LAI to
remote sensing vegetation index data (Cohen et al., 2003;
Gonsamo and Pellikka, 2012). Empirical models have been widely
used due to their ease of implementation. However, these methods
cannot be applied across large areas due to the fact that their
parameters are restricted to specific biome types. Additionally,
there is a tendency for SVIs to saturate at moderately high LAIs
(Gray and Song, 2012; Yang et al., 2012; Heiskanen et al., 2012;
Gu et al., 2013; Potithep et al., 2013).

Although the current LAI product mapped using remotely
sensed data has been widely used, it is spatially and temporally
discontinuous as a result of cloud cover, seasonal snows, and
instrumental constraints. This has limited the application of LAI
to ground surface process simulations, climatic modeling, and glo-
bal change research (Fang et al., 2008). Image fusion technology
has already been important in mapping LAI using spatial, spectral,
and temporal information from multiple sensors (Gray and Song,
2012; Hernández et al., 2014). The spatially and temporally discon-
tinuous of LAI was caused by the gaps of remote sensing data. A
solution to fill the gaps of remote sensing data is to develop high
spatial and temporal multi-source remote sensing data fusion
methods. Several spatial and temporal data fusion approaches have
been proposed to blend high spatial and high temporal data to gen-
erate synthetic high spatial resolution imagery with high temporal
resolution. These methods can be classified into two categories.
The first category is the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) developed by Gao et al.
(2006). Several studies applied and demonstrated the STARFM for
mainly coniferous areas, urban environmental variables extraction,
vegetated dry-land ecosystems monitoring, public health studies,
and generating daily land surface temperatures (Hilker et al.,
2009; Walker et al., 2012; Liu and Weng, 2012; Weng et al.,
2014; Schmidt et al., 2015). Zhu et al. (2010) enhanced the
STARFM for complex heterogeneous regions. Emelyanova et al.
(2013) assessed the accuracy of STARFM and ESTARFM for two
landscapes with contrasting spatial and temporal dynamics. The
second category is based on linear mixing theory, called unmixing
method. Here, the coarse resolution images are disaggregated by
solving linear mixed models based on the assumption that the
reflectance of each coarse spatial resolution pixel is a linear combi-
nation of the responses of each land-cover class contributing to the
mixture (Settle and Drake, 1993; Maselli et al., 1998; Duran and
Petrou, 2014). However, this assumption is violated in many situ-
ations because of the spatial variability of surface reflectance.
Several methods have been proposed to address this problem
based on the assumption that spectral properties of a land-cover
class do not show great variations in the surroundings of a pixel
(Zhukov et al., 1999; Maselli, 2001; Lorenzo et al., 2008; Wu
et al., 2012). Gevaert and García-Haro (2015) compared the
STARFM and an unmixing-based algorithm and recommended
using unmixing-based data fusion in situations where the spectral
characteristics of the medium-resolution input imagery is
downscaled.

To fill the gaps in the current LAI products, the overall aim of
this study is to develop an algorithm to generate high spatial and
temporal resolution LAI products with synthetic Landsat data, gen-
erated by an unmixing-based spatial and temporal data fusion
model. The objectives of this study, therefore, are: (1) to analyze

the ability of a spatial and temporal data fusion model to generate
high spatial and temporal resolution synthetic LAI data; (2) to test
and compare various Spatial Temporal Data Fusion Approach
(STDFA) application strategies in the estimation of high spatial
and temporal resolution LAI.

2. Materials and methods

2.1. Study area

The Xiaotangshan National Demonstration Base of Precision
Agriculture Research in the Changping District of Beijing, China
was selected as the study area for this research. The
Xiaotangshan National Demonstration Base is the first experimen-
tal, research and demonstration base for precision agriculture tech-
nology in China, and covers a total area of 2500 acres. The precision
production testing and demonstration areas of the large fields in
this base integrate modern information technology and intelligent
equipment technologies. Fertilization, irrigation, and spraying
operations in the large fields can been precisely controlled by
machines on site (Changping district association for science and
technology 2012). One of the fields in this Demonstration Base,
centered on 40�1004400N, 116�26023.300E and with an area
450 � 820 m planted with winter wheat, was used in this study
(Fig. 1).

2.2. Satellite data and pre-processing

One Landsat-7 Enhanced Thematic Mapper Plus (ETM+) image
and a time series of the MODIS surface reflectance product were
used in this study. The Landsat-7 ETM+ image was acquired on
May 17, 2012. It has no missing lines in our study area as the
Scan Line Corrector (SLC) has been switched off. The image was
atmospherically corrected using the 6S radiative transfer code.
The atmospherically corrected image was then georeferenced
using a second order polynomial warping approach, based on the
selection of 21 Ground Control Points (GCPs) using a 1:10,000
topographic map, and application of the nearest neighbor resam-
pling method with a position error of less than 0.5 pixels for the
Landsat-7 ETM+ images.

MODIS surface reflectance products (MOD09GA, 500 m),
obtained in clear sky conditions from April 11, 2012 to June 9,
2012, were used in this study (Table 1). Images affected by clouds
were not used; therefore, only 17 days of MOD09GA data acquired
with clear sky conditions were used. The MOD09GA product has
six spectral bands at 500 m spatial resolution. All MODIS images
were re-projected from the native Sinusoidal projection to a
UTM-WGS84 reference system, and were resized to select the
study area using MODIS Reprojection Tool (MRT) software. All
MODIS data were then georeferenced by a second order polyno-
mial warping approach based on the selection of 26 of GCPs on
the 480 m Landsat ETM+ images, and the application of a nearest
neighbor resampling method with a position error of less than
0.6 MODIS pixels. The 480 m Landsat ETM+ images were generated
from georeferenced Landsat ETM+ images by a pixel aggregate
resampling method.

2.3. Generation of high spatial and temporal resolution synthetic
Landsat ETM+ data

The Spatial Temporal Data Fusion Approach (STDFA) proposed
by Wu et al. (2012) was used to generate high spatial and temporal
resolution synthetic Landsat ETM+ data. The STDFA algorithm
comprises three steps: (1) mapping medium resolution spatial
Landsat-7 ETM+ images using the IsoData classification method
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