Accepted Manuscript

Investigation of *in vitro* Hydrophilic and Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium alginate-MaterBi® Drying Emulsions

Chiara Setti, Giulia Suarato, Giovanni Perotto, Athanassia Athanassiou, Ilker S. Bayer

PII: S0939-6411(17)31528-X

DOI: https://doi.org/10.1016/j.ejpb.2018.06.019

Reference: EJPB 12812

To appear in: European Journal of Pharmaceutics and Biophar-

maceutics

Received Date: 27 December 2017

Revised Date: 15 June 2018 Accepted Date: 17 June 2018

Please cite this article as: C. Setti, G. Suarato, G. Perotto, A. Athanassiou, I.S. Bayer, Investigation of *in vitro* Hydrophilic and Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium alginate-MaterBi [®] Drying Emulsions, *European Journal of Pharmaceutics and Biopharmaceutics* (2018), doi: https://doi.org/10.1016/j.ejpb.2018.06.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Investigation of *in vitro* Hydrophilic and Hydrophobic Dual Drug Release from Polymeric Films Produced by Sodium alginate-MaterBi[®] Drying Emulsions

Chiara Setti^{1,2}, Giulia Suarato^{1,3}, Giovanni Perotto¹, Athanassia Athanassiou¹, Ilker S. Bayer^{1,3}

¹Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

²Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All'Opera Pia 13, 16145 Genova, Italy

³Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Abstract

Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for *in vivo* controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi[®], and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi[®]/alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells.

Key Words: Emulsions, MaterBi[®], alginate, eosin, cutaneous antiseptic, curcumin, drug release.

E-mail: ilker.bayer@iit.it

Download English Version:

https://daneshyari.com/en/article/8411598

Download Persian Version:

https://daneshyari.com/article/8411598

<u>Daneshyari.com</u>