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a b s t r a c t

In this article, we study piecewise linear discretization schemes for transfer operators
(Perron–Frobenius operators) associated with interval maps. We show how these can
be used to provide rigorous pointwise approximations for invariant densities of Markov
interval maps. We also derive the order of convergence of the approximate invariant
density to the real one in the L∞-norm. The outcome of this paper complements recent
results on the formulae of escape rates of open dynamical systems, (Keller and Liverani,
2009) [7]. In particular, the novelty of our work over previous results on BV and L∞

approximations is that it provides a method for explicit computation of the approximation
error.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Although this article is about the approximation of invariant densities for interval maps, it is intimately related to what
are commonly termed open dynamical systems ormapswith ‘holes’ [1,2]. Open dynamical systems have become a very active
area of research. In part, this is due to their connection tometastable dynamical systems [3,4] and their applications in earth
and ocean sciences [5,6]. Corresponding to invariant measures for closed dynamics, in open dynamical systems, long-term
statistics are described by a conditionally invariant measure and its related escape rate, measuring the mass lost from the
system per unit time [1].

In their recent article [7], Keller and Liverani obtained precise escape rate formulae for Lasota–Yorke maps with
holes shrinking to a single point. These formulae depend, pointwise, on the invariant density of the corresponding closed
system. Unfortunately, explicit formulae of invariant densities for Lasota–Yorke maps are, in general, unavailable. Thus, to
complement the result of [7], it is natural to consider numerical schemes that provide rigorous and computable pointwise
approximations of invariant densities.

In the literature, rigorous approximation results are available in the L1-norm [8–11], the L∞-norm [12] and in the
BV -norm, the space of functions of bounded variation, [13,14]. None of these methods are well suited to our problem. For
example, L1 approximations cannot provide the pointwise information necessary for application of the formulae of [7] (see
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Section 7 in [15]). Previous convergence schemes in the L∞-norm and BV -norm did not provide an explicit computation of
the approximation error.1

By rigorous and computable approximation, we mean the following. Assume we are given a transformation τ (typically,
a formula) and an error tolerance, for example ∆ := 10−2. We choose a suitable discretization scheme for the transfer
(Frobenius–Perron) operator associated to τ and we are asked to determine an explicit level of discretization, ϵ, such that
the approximate invariant density f ∗

ϵ for the discretized operator at level ϵ satisfies

‖f ∗
− f ∗

ϵ ‖∞ ≤ ∆. (1.1)

Here, f ∗ is the invariant density for τ . We emphasize that, we assume the continuous density f ∗ to be unknown throughout
this calculation. By computable we mean that, at each step, one can determine via an algorithm, within a finite number of
steps, each quantity necessary to determine2 f ∗

ϵ and to guarantee inequality (1.1).
One novelty of our approach is that we will need to consider two different discretization schemes in order to carry out

this task, both based on binned discretization of the state space. The results in this paper enable us to compute the number
of binsmwith ϵ = m−1, and the associated approximate density (as usual, denoted by f ∗

m), which achieves the tolerance∆,
uniformly.

The first ingredient in our analysis uses a natural piecewise linear discretization scheme and the abstract perturbation
result of [16]. The two Banach spaces involved in our computation are L∞, and the space of Lipschitz continuous functions
on the unit interval. The same Banach spaces were used in [17] to provide a computer-assisted estimate on the rate of decay
of correlations. However, the discretization scheme which was used in [17] is the traditional Ulammethod. Ulam’s method
does not fit in our setting, since it does not preserve the regularity of the space of Lipschitz continuous functions. The idea of
our method is to first prove an appropriate Lasota–Yorke inequality for transfer operators associated with Markov interval
maps, then, to construct a discretized transfer operator which preserves the regularity of the space of Lipschitz continuous
functions and which is close, in some suitable norm, to the original transfer operator. Although, neither the original transfer
operator nor its discretized counterpart is a contraction in the L∞-norm3, we obtain quasi-compactness of the original
transfer operator, thanks to the result of [18]. We use the general setting of [16], which allows the study of perturbations
of transfer operators, which are not necessarily contractions on either Banach space. With this machinery, we can compute
an explicit upper bound on the norm of the resolvent, bounded away from the spectrum, of the transfer operator associated
with the map. Once an upper bound on the norm of the resolvent is computed, we use a second discretization scheme,
whose associated finite rank operator is Markov, to compute an approximate invariant density with the pre-specified error
tolerance∆.

The reason for using two different discretizations in our method is as follows. The first discretization has the projection
property. This property is essential in the proofs related to the computation of an explicit upper bound on the norm of
the resolvent. Moreover, it produces reasonable constants,4 which are needed when using the perturbation result of [16].
However, this natural discretization leads to a non-Markovian finite rank operator. The lack of the Markov property makes
the (theoretical) rate of convergence slow. Thus, at the next stage, we use a different discretization, which lacks the
projection property,5 but produces a finite rank operator which is Markov. With this Markov scheme we will obtain a
computable rate of convergence which is of orderm−1 lnm.

In Section 2, we set up our notation and assumptions. We also recall known results on Markov interval maps which are
needed in the sequel. In Section 3, we provide a Lasota–Yorke inequality on the space of Lipschitz continuous functions. In
Section 4, we present our two discretization schemes and prove results about their regularity properties when acting on
the space of Lipschitz continuous functions. In Section 5, we present the perturbation result of [16] as a sequence of steps
which are necessary for rigorous computations and in Section 6, we apply the perturbation result to our problem. The main
challenge of this paper lies in this section, where we design an algorithmwhich enables one to rigorously compute an upper
bound on the norm of the resolvent of the continuous transfer operator. The resolvent estimate can then be used in Section 7
to compute the decay of correlations and to obtain a rate of convergence Cm−1 lnm in Section 8, where C is a computable
constant. In Section 9, we implement the algorithm of Section 6 on a specific Markov interval map. Numerical results are
reported for all critical constants. In particular, we compute the number of bins (m = 7×106) that guarantee approximation
of f ∗ by f ∗

m within tolerance ∆ = 10−2. Section 10 contains a discussion of an alternate projection-based (non-Markov)
scheme and in general, on efficiency of both piecewise linear discretization schemes for uniform approximation.

1 See also footnote 20 in [10] about numerical obstacles when one attempts to obtain rigorous BV approximations by using traditional discretization
schemes.
2 Of course, the efficiency of such an algorithm is an important issue. For our purpose, we will be satisfied with algorithms that can be implemented in

standard mathematical software on a personal computer. Beyond that, we do not specifically address computational efficiency in this article.
3 Unlike the L1 setting where the norm of the transfer operator is automatically ‖L‖1 ≤ 1, here we can only show that |L| ≤ M , where M is typically

greater than or equal to 1.
4 This is very important from a computational point of view. In particular, smaller constantsmean that less timewill be spent on the computer to produce

the desired computation.
5 Thus, we could not use the Markov discretization right from the beginning.
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