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a b s t r a c t

We obtain critical point variants of the compression fixed point theorem in cones of
Krasnoselskii. Critical points are localized in a set defined by means of two norms. In
applications to semilinear elliptic boundary value problems this makes possible the use
of local Moser–Harnack inequalities for the estimations from below. Multiple solutions are
found for problems with oscillating nonlinearity.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

There exists a huge literature devoted to the existence and localization of positive solutions of various types of integral,
and ordinary differential and partial differential equations. One of the most common approaches is based on Krasnoselskii’s
fixed point theorem in cones (see [1–4]) and has been intensively used in studying boundary value problems for ordinary
differential equations and integral equations (see [5–8,2,9–11,4,12,13]). Its success is due to the upper and lower inequalities
for the appropriate Green’s functions. Similar inequalities for boundary value problems related to partial differential
equations are not known and Krasnoselskii’s theorem has appeared quite inapplicable to such problems. Some progress
in this direction has been made in [14,15], where bilateral estimates are used only with respect to one of the variables (say,
the time variable), or, by iteration, successively, to all of the variables. Obviously, this has required a suitable geometry of
the domain of the equation. Also in paper [16] we pointed out the role of global weak Harnack inequalities for nonnegative
superharmonic functions in the applicability of Krasnoselskii’s theorem to semilinear elliptic problems in general domains.
However, global Harnack inequalities in n dimensions, n > 1, are not known and therefore we may think of using instead
local Harnack inequalities. The aim of this paper is to show that local Moser–Harnack inequalities can be used together
with variational versions of Krasnoselskii’s theorem in order to prove the existence, localization and multiplicity of positive
solutions for semilinear elliptic problems. The results in this paper extend and complement those from [17–19,16,20–22]
and make clear some arguments first used in [23].
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2. Preliminaries

Consider a real Hilbert space X with inner product and norm (., .), |.|, and a Banach space H with norm ‖.‖, and assume
that there exists a linear continuous map I : X → H by which we shall identify X with the linear subspace I(X) of H , and
any element u ∈ X with its image Iu ∈ H . Thus we shall say that X ⊂ H and the embedding is continuous. When I is
compact we say that the embedding is compact. Let us denote by c0 the best embedding constant with

‖u‖ ≤ c0|u| for all u ∈ X, (2.1)

that is c0 = sup{‖u‖ : u ∈ X, |u| = 1}.
We consider a C1 real functional E defined on X and we are interested in the equation

E ′(u) = 0.

By a cone of X we shall understand a convex closed nonempty set K ⊂ X , K ≠ {0}, with λu ∈ K for every u ∈ K
and λ ≥ 0, and K ∩ (−K) = {0}. Let φ ∈ K \ {0} be a fixed element with |φ| = 1. Then, for all numbers R0, R1 with
0 < R0 < ‖φ‖R1, there is µ > 0 such that ‖µφ‖ > R0 and |µφ| < R1. Denote by KR0R1 the connected component of the set
{u ∈ K : ‖u‖ ≥ R0, |u| ≤ R1} which contains µφ. Clearly µφ is an interior point of KR0R1 . We note that, in particular, when
X = H and ‖.‖ = |.|, KR0R1 is the conical shell {u ∈ K : R0 ≤ |u| ≤ R1}.

By ⟨., .⟩ we denote the natural duality between X and X ′, that is ⟨u∗, u⟩ = u∗(u) for u ∈ X and u∗
∈ X ′, and also the

natural duality between H and H ′. We consider a C1 normalization function ϕ : R+ → R+, i.e. continuously differentiable,
with ϕ(0) = 0, ϕ′(τ ) > 0 for every τ > 0 and ϕ(τ) → ∞ as τ → ∞, and we denote by P the duality map on H associated
with ϕ, assumed to be a continuous single-valued map, namely P : H → H ′,

⟨Pu, u⟩ = ‖Pu‖H ′‖u‖, ‖Pu‖H ′ = ϕ(‖u‖) for all u ∈ H.

We shall restrict ourselves to spaces H with the additional property that for each function u ∈ C1(R+,H), function Pu(t)
belongs to C1(R+,H ′) and

d
dt
(Pu(t)), u(t)


= ~⟨Pu(t), u′(t)⟩ for all t ∈ R+

and some constant ~ ∈ R+. These guarantee that

[ϕ(‖u(t)‖)+ ϕ′(‖u(t)‖)‖u(t)‖]
d
dt

‖u(t)‖ = ⟨Pu(t), u′(t)⟩ +


d
dt
(Pu(t)), u(t)


= (1 + ~)⟨Pu(t), u′(t)⟩, (2.2)

which shows that ⟨Pu(t), u′(t)⟩ and d
dt ‖u(t)‖ have the same sign.

Let L be the linear operator from X to X ′ (the canonical isomorphism of X onto X ′), given by

(u, v) = ⟨Lu, v⟩ for all u, v ∈ X,

and let J from X ′ into X be the inverse of L. Then

(Ju, v) = ⟨u, v⟩ for all u ∈ X ′, v ∈ X .

From

|Ju|2 = (Ju, Ju) = ⟨u, Ju⟩ ≤ |u|X ′ |Ju|,

(u ∈ X ′), we have that |Ju| ≤ |u|X ′ , which shows that J is a linear continuous map. Also, if u ∈ H , then

|JPu|2 = (JPu, JPu) = ⟨Pu, JPu⟩ ≤ ‖Pu‖H ′‖JPu‖ = ϕ(‖u‖)‖JPu‖ ≤ c0ϕ(‖u‖)|JPu|.

Hence

|JPu| ≤ c0ϕ(‖u‖). (2.3)

In addition there exists a number R with R ≤ R1 and

|JPu| ≥ R > 0 for all u ∈ KR0R1 . (2.4)

Indeed, otherwise, there would be a sequence (uk) of elements in KR0R1 with |JPuk| → 0 as k → ∞. Now, from

ϕ(R0)R0 ≤ ϕ(‖uk‖)‖uk‖ = ⟨Puk, uk⟩ = (JPuk, uk) ≤ |JPuk| |uk| ≤ R1|JPuk|

letting k → ∞, we derive the contradiction ϕ(R0)R0 ≤ 0.
We shall assume that JP is positive with respect to K , i.e.

JP(K) ⊂ K .
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