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1. Introduction
In this paper, we study the following elliptic system:
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where 2 C R¥(N > 3) is a bounded domain with smooth boundary 92, n > 0,a; € 2, 4; > 0, ;i < 1,2 < q; <

2%, i=1,2,a, B> 1,a+p =2%2% = 2L is the critical Sobolev exponent and /i := (%)2 is the best Hardy constant.
We work in the product energy space H x H, where H := H; (£2) denotes the completion of CJ°(§2) with respect to the

norm ( [, |Vul? dx)'/2. The corresponding energy functional of the problem (1.1) is defined in H x H by
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Thenj € C'(H x H, R). The duality product between H x H and its dual space (H x H)~! is defined as
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where u, v, ¢, ¢ € H and J'(u, v) denotes the Fréchet derivative of J at (u, v). A pair of functions (u, v) € H x H is said to
be a solution of the problem (1.1) if

J'(w,v), (9. 9)) =0, V(p,¢) €H xH.

The nontrivial solution of (1.1) is then a nonzero critical point of J (u, v). By the standard elliptic argument we can verify that
the solution (u, v) of (1.1) has the following property:

u,v € C3(2\ {ar, ) N C' (2 \ {a1, az)). (1.3)
The problem (1.1) is related to the well-known Hardy inequality [1,2]:
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By the Hardy inequality, the operator L := (—A - —u W) is positive for any © < x and a € £2. Therefore the first
eigenvalue of L is well defined:

S (I = 2) dx
A = inf , € (—o0, 1), ac 2.
1(u) st T uPdx me( ©)

Furthermore, we can define the following best constant:
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where the space D"-2(R") is the completion of C§°(R") with respect to the norm ([ |Vu|?*dx)"/%. Note that S(u) is
independent of the point a and S(0) = S, where S is the well-known best Sobolev constant [3]. For 0 < u < [, we
infer from [4] that S(w) is attained by the extremal function
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where U, (x) = U, (|x]) is a radially symmetric function and has the explicit form:
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The function V; M(x) solves the equation
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Furthermore,
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If w < 0, from the result in [5] it follows that S(u) = S(0) = S.
On the other hand, forany a;, a; € RV, uq, i < ji, @, B > 1, + B = 2*, we can define the following best constant
in the space D = (DV2(RN) \ {0})?%:
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