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a b s t r a c t

In this paper, we investigate a singular elliptic system, which involves the critical Sobolev
exponent andmultiple Hardy-type terms. By employing variationalmethods, the existence
of its positive solutions is established. By the Moser iteration method, some asymptotic
properties of its nontrivial solutions at the singular points are verified.
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1. Introduction

In this paper, we study the following elliptic system:
−1u−

µ1 u
|x− a1|2

= |u|2
∗
−2u+

η α

α + β
|u|α−2|v|βu+ λ1|u|q1−2u, x ∈ Ω,

−1v −
µ2 v

|x− a2|2
= |v|2

∗
−2v +

ηβ

α + β
|u|α|v|β−2v + λ2|v|q2−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, η > 0, ai ∈ Ω, λi > 0, µi < µ̄, 2 ≤ qi <
2∗, i = 1, 2, α, β > 1, α+β = 2∗, 2∗ := 2N

N−2 is the critical Sobolev exponent and µ̄ :=
(N−2
2

)2
is the best Hardy constant.

We work in the product energy space H × H , where H := H10 (Ω) denotes the completion of C
∞

0 (Ω)with respect to the
norm (

∫
Ω
|∇u|2 dx)1/2. The corresponding energy functional of the problem (1.1) is defined in H × H by

J(u, v) :=
1
2

∫
Ω

(
|∇u|2 + |∇v|2 −

µ1 u2

|x− a1|2
−

µ2 v
2

|x− a2|2

)
−
η

2∗

∫
Ω

|u|α|v|β

−
1
2∗

∫
Ω

(
|u|2

∗

+ |v|2
∗
)
−
λ1

q1

∫
Ω

|u|q1 −
λ2

q2

∫
Ω

|v|q2 . (1.2)

Then J ∈ C1(H × H,R). The duality product between H × H and its dual space (H × H)−1 is defined as

〈J ′(u, v), (ϕ, φ)〉 :=
∫
Ω

(
∇u∇ϕ +∇v∇φ −

µ1uϕ
|x− a1|2

−
µ2vφ

|x− a2|2

)
dx
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∫
Ω

(
|u|2

∗
−2uϕ + |v|2

∗
−2vφ + λ1|u|q1−2uϕ + λ2|v|q2−2vφ

)
dx

−

∫
Ω

(
ηα

α + β
|u|α−2|v|βuϕ +

ηβ

α + β
|u|α|v|β−2vφ

)
dx,

where u, v, ϕ, φ ∈ H and J ′(u, v) denotes the Fréchet derivative of J at (u, v). A pair of functions (u, v) ∈ H × H is said to
be a solution of the problem (1.1) if

〈J ′(u, v), (ϕ, φ)〉 = 0, ∀(ϕ, φ) ∈ H × H.

The nontrivial solution of (1.1) is then a nonzero critical point of J(u, v). By the standard elliptic argument we can verify that
the solution (u, v) of (1.1) has the following property:

u, v ∈ C2(Ω \ {a1, a2}) ∩ C1(Ω̄ \ {a1, a2}). (1.3)

The problem (1.1) is related to the well-known Hardy inequality [1,2]:∫
RN

|u|2

|x− a|2
dx ≤

1
µ̄

∫
Ω

|∇u|2 dx, ∀ u ∈ C∞0 (R
N), a ∈ RN .

By the Hardy inequality, the operator L := (−1 · −µ ·

|x−a|2
) is positive for any µ < µ̄ and a ∈ Ω . Therefore the first

eigenvalue of L is well defined:

Λ1(µ) := inf
u∈H\{0}

∫
Ω

(
|∇u|2 − µu2

|x−a|2

)
dx∫

Ω
|u|2dx

, µ ∈ (−∞, µ̄), a ∈ Ω.

Furthermore, we can define the following best constant:

S(µ) := inf
u∈D1,2(RN )\{0}

∫
RN

(
|∇u|2 − µ u2

|x−a|2

)
dx(∫

RN |u|
2∗dx

) 2
2∗

, µ ∈ (−∞, µ̄), a ∈ RN ,

where the space D1, 2(RN) is the completion of C∞0 (R
N) with respect to the norm (

∫
RN |∇u|

2 dx)1/2. Note that S(µ) is
independent of the point a and S(0) = S, where S is the well-known best Sobolev constant [3]. For 0 ≤ µ < µ̄, we
infer from [4] that S(µ) is attained by the extremal function

V εa,µ(x) := ε
2−N
2 Uµ

(
x− a
ε

)
, ∀ε > 0, (1.4)

where Uµ(x) = Uµ(|x|) is a radially symmetric function and has the explicit form:

Uµ(x) =
(
2N (µ̄− µ)
√
µ̄

)√µ̄
2
(
|x|
√
µ̄−
√
µ̄−µ

√
µ̄ + |x|

√
µ̄+
√
µ̄−µ

√
µ̄

)−√µ̄
.

The function V εa,µ(x) solves the equation

−1u−
µ u
|x− a|2

= |u|2
∗
−2 u in RN \ {a},

and satisfies∫
RN

(
|∇V εa,µ(x)|

2
− µ
|V εa,µ(x)|

2

|x− a|2

)
=

∫
RN
|V εa,µ(x)|

2∗
= S(µ)

N
2 .

Furthermore,

S(µ) =
(
1−

µ

µ̄

) N−1
N

S, 0 ≤ µ < µ̄.

If µ < 0, from the result in [5] it follows that S(µ) = S(0) = S.
On the other hand, for any a1, a2 ∈ RN , µ1, µ2 < µ̄, α, β > 1, α + β = 2∗, we can define the following best constant

in the spaceD := (D1,2(RN) \ {0})2:

Sα,β(µ1, µ2) := inf
(u,v)∈D

∫
RN

(
|∇u|2 + |∇v|2 − µ1u2

|x−a1|2
−

µ2v
2

|x−a2|2

)
dx(∫

RN |u|
α|v|βdx

) 2
2∗

. (1.5)
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