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a b s t r a c t

Measuring the stem water potential (Wst), which is an essential parameter for assessing plant water sta-
tus, is a tedious and labor-consuming task. In this work, hybrid soft computing techniques were applied
to design a model able to estimate Wst based on agro-meteorological and soil water content data. A Ta
kagi–Sugeno–Kang fuzzy inference system (TSK-FIS) was obtained. This kind of model approximates
non-linear systems by combining a set of functions local to fuzzy regions described by fuzzy rules.
Such models have approximative power and are sufficiently descriptive. Starting from a set of input–out-
put data, inputs relevant to Wst were automatically selected and fuzzy rules were identified based on the
fuzzy clusters found in the data. The rule parameters were optimized by means of a neuro-fuzzy
approach. The result was an accurate (86% variance explained) and simple model with five rules that con-
sidered soil water content at 0.3 m depth, the day of the year and mean daily air temperature as input
variables, confirming the suitability of such approach. In addition, a rule simplification method allowed
a consistent agro-linguistic interpretation of the fuzzy sets of the rules: DRY, MOIST and WET for the soil
water content, BLOOM, FRUIT GROWTH, EARLY POSTHARVEST and LATE POSTHARVEST for the day of the
year, and COLD, MILD and WARM for mean daily air temperature.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Irrigation management strategies that reduce crop water use
without affecting final production are increasingly considered a
necessity in semi-arid areas where uncertainty in irrigation water
supply requires a more efficient use of the available resources. In
peach trees, water deficits during the second fruit rapid growth
phase are more harmful than in other phenological stages (Besset
et al., 2001; Naor et al., 2005), and the postharvest phase is the
most suitable period for applying irrigation deficits
(Ruiz-Sánchez et al., 2010; Mounzer et al., 2008). For the imple-
mentation of regulated deficit irrigation strategies, crop critical
periods, the overlapping stages of vegetative and fruit growth
and the exact plant response to water deficits under local condi-
tions must be understood (Abrisqueta et al., 2010; Girona et al.,
2003; Girona et al., 2005). Identification of the level of water stress
suffered by the plant is therefore essential when using deficit

irrigation strategies (Hsiao, 1990; Naor, 2006). Several indicators
of water status have been used to quantify peach tree water stress
levels (Conejero et al., 2011; Goldhamer et al., 1999), among them
stem water potential (Wst), which is accepted as one of the most
accurate plant water status indicator (Shackel et al., 1997).
However, measuring Wst is a labou-intensive and destructive
method.

In this work, we propose a model able to estimate Wst of adult
peach trees under different drip irrigation conditions by the appli-
cation of soft computing techniques to agro-meteorological and
soil water content data. Soft computing is a field of artificial intel-
ligence whose main objective is the design of intelligent systems to
manage uncertain and imprecise information (Zadeh, 1993).
Evolutionary computing, fuzzy logic and artificial neural networks
(ANN) are some of the main components of soft computing, along
with hybrid mechanisms such as neuro-fuzzy approaches which
combine the approximative and adaptive capabilities of ANNs with
the expressiveness of fuzzy logic-based models such as fuzzy infer-
ence systems (FISs). This expressiveness, also called interpretability,
is the main incentive for using FISs as an alternative to other mod-
els such as ANNs. While ANNs are considered black-box models,
FISs express the behavior of the system in terms of fuzzy rules
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which are understandable for an expert and whose parameters are
easily adjustable if needed.

FISs in particular and soft computing techniques in general have
been successfully applied to different problems in the
agro-meteorological context. Valdés et al. (2005) proposed a
neuro-fuzzy approach to estimate reference evapotranspiration
(ET0). Kumar et al. (2011) also applied an ANN to obtain ET0, while
Valdés et al. (2003) used another FIS for the interpolation of solar
radiation, as this is one of the inputs needed to the Penman–
Monteith ET0 equation (Allen et al., 1998). Pulido-Calvo and
Gutiérrez-Estrada (2009) proposed an FIS tuned by a genetic algo-
rithm for irrigation water demand forecasting. Capraro et al. (2008)
applied a neural approach to infer the water demand and time
needed to take the soil moisture level to a desired value. Martí
et al. (2013) proposed an ANN for the estimation of Wst of citrus
trees under a single irrigation treatment and a limited dataset.

In this work, we propose a FIS to estimate Wst . This model is
based on fuzzy rules and, therefore, is quite interpretable while
being sufficiently accurate. The FIS was generated using data of dif-
ferent irrigation treatments with the aim of making it as general as
possible.

The paper describes the process by means of which the model
for Wst estimation is generated. FISs can be designed based on
expert knowledge or data, in general, the latter being more accu-
rate. On the other hand, those based on expert knowledge are more
interpretable than those based on data (Guillaume, 2001). Given
that the main goal in this work is accuracy, an FIS is generated from
input–output data using the so-called fuzzy modeling process. The
process is composed of three main phases. The first task is
the selection of the input variables that are relevant to Wst . Then,
the structure of the fuzzy rules is generated and their parameters
are optimized in order to improve the accuracy.

In addition, a rule simplification method that reduces the com-
plexity of the model can be applied. The simpler the model, the
more understandable it is, the easier to manually modify its
parameters if be necessary and the less memory and computation
time needed.

2. Materials and methods

2.1. Plant material and irrigation treatments

The experiments were performed over five growing seasons
(2009–2013) in an orchard of adult early-maturing peach trees
(Prunus persica (L.) Batsch, cv. Flordastar, on GF-677 rootstock),
located in an experimental 0.8 ha plot in Santomera–Murcia (S.E.
Spain): 38�06N;1�02W. The soil is highly calcareous, stony and
0.9 m deep, with a clay-loam texture. Trees were spaced
5 m � 5 m and irrigated by a drip irrigation system consisting of
a single lateral line per tree row, with eight emitters per tree,
placed 0.5 m from the trunk, providing 2 L/h. Irrigation was initi-
ated in mid-February at flowering and suspended in early
November. More details on the experimental plot, plant material
and cultural practices have been described elsewhere (Mounzer
et al., 2008; Vera et al., 2013). Five irrigation treatments, dis-
tributed in a completely randomized design with four replications
(each consisting of one row of 13 trees), were set up: control (T100)
irrigated to fulfil crop evapotranspiration (100% ETc), which was
estimated from the crop reference evapotranspiration (ET0) values,
calculated with the Penman–Monteith equation (Allen et al., 1998),
and local crop coefficients (Abrisqueta et al., 2013); continuous
deficit irrigation (T50) irrigated at 50% of ETc all season; regulated
deficit irrigation (TRDI) irrigated to fully cover 100% ETc during
the fruit growth period, with the irrigation water reduced to 70
and 25% ETc during the postharvest period; automatic control of

irrigation (TSoil) based on soil water content threshold values mea-
sured with FDR-type capacitance probes (Vera et al., 2013), and a
non-irrigated treatment (T0), which received no water except dur-
ing the fruit growth period (irrigated 100% ETc). The irrigation
water volumes were obtained from inline flow meters.

2.2. Measurements

Agro-meteorological data were recorded every 15 min by an
automatic weather station located within the peach orchard with
real-time access via the web. From these data the following vari-
ables were calculated: mean daily air temperature Tm (�C), relative
humidity RHm (%), vapor pressure deficit VPDm (kPa) and solar radi-
ation Rm (Wm�2); also daily crop reference evapotranspiration ET0

(mm) was calculated using the Penman–Monteith equation (Allen
et al., 1998). The volumetric soil water content was measured
weekly in the morning with a neutron probe (TROXLER, mod.
4300; Troxler Electronic Laboratories Inc., Research Triangle Park,
NC, USA) from 0.2 to 0.8 m in 0.1 m increments (S2 to S8) in access
tubes installed in the wetted area (0.1 m from the second emitter)
of one tree of each replication and treatment. The soil water con-
tent in the top 0.1 m of the soil (S1) was measured by time domain
reflectometry (TDR) (TEKTRONIX, mod. 1502B; Tektronix Inc.,
Beaverton, OR, USA). Midday (12 h GMT) stem water potential
Wst (MPa) was measured weekly with a pressure chamber (Soil
Moisture Equip., model 3000) in one leaf per tree of four randomly
selected trees per treatment (one per replicate). The leaves were
selected from within the canopy and close to the trunk, wrapped
in small bags of aluminum foil for at least 2 h prior to measure-
ment (Shackel et al., 1997) and placed in the chamber within sec-
onds of excision and following the precautions recommended by
Hsiao (1990).

In addition to the previously mentioned variables, the day of the
year (DOY) was also taken into account, since it can be considered
as an indicator of the phenological state of the plant.

The available data Z ¼ fz1; z2; . . . ; zng are distributed for the
different year and treatments as shown in Table 1, with n ¼ 391
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i ¼ 1; . . . ;n. The third and fourth years have the same percentages
for data of the different treatments. In contrast, for the first year, no
T100 data are available and the second year lacks T0 data while hav-
ing a number of T100 data that doubles the normal number of data
of the remaining treatments. Nevertheless, the data are almost
equally distributed across treatments. Having the same number
of data for every treatment avoids a biased training.

2.3. Fuzzy sets

A fuzzy set A, on a domain, X, is defined by the membership
function lAðxÞ : X! ½0;1�. Given an element x 2 X, if the value
lAðxÞ equals one, then x is said to completely belong to the fuzzy
set A. If it equals zero, x does not belong to A. If lAðxÞ is between
0 and 1, x is a partial member of the fuzzy set A.

Table 1
Distribution of data for each year and treatment.

Year T100 T50 TRDI TSoil T0 Total

1 0 (0 %) 24 (25%) 24 (25%) 24 (25%) 24 (25%) 96
2 44 (40%) 22 (20%) 22 (20%) 22 (20%) 0 (0%) 110
3 23 (20%) 23 (20%) 23 (20%) 23 (20%) 23 (20%) 115
4 14 (20%) 14 (20%) 14 (20%) 14 (20%) 14 (20%) 70
Total 81 (21%) 83 (21%) 83 (21%) 83 (21%) 61 (16%) 391
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