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a b s t r a c t

Structural traits of permeation enhancers are important determinants of their capacity to promote
enhanced drug absorption. Therefore, in order to obtain a better understanding of structure–activity
relationships for permeation enhancers, a Quantitative Structural Activity Relationship (QSAR) model
has been developed.

The random forest-QSAR model was based upon Caco-2 data for 41 surfactant-like permeation
enhancers from Whitehead et al. (2008) and molecular descriptors calculated from their structure.

The QSAR model was validated by two test-sets: (i) an eleven compound experimental set with Caco-2
data and (ii) nine compounds with Caco-2 data from literature. Feature contributions, a recent developed
diagnostic tool, was applied to elucidate the contribution of individual molecular descriptors to the pre-
dicted potency. Feature contributions provided easy interpretable suggestions of important structural
properties for potent permeation enhancers such as segregation of hydrophilic and lipophilic domains.
Focusing on surfactant-like properties, it is possible to model the potency of the complex pharmaceutical
excipients, permeation enhancers. For the first time, a QSAR model has been developed for permeation
enhancement. The model is a valuable in silico approach for both screening of new permeation enhancers
and physicochemical optimisation of surfactant enhancer systems.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Development of oral delivery systems for proteins and peptides
offers the promise of improved patient compliance compared to
conventional parenteral administration. However, bioavailability
is, in part, limited due to poor absorption of proteins across the

intestinal epithelial barrier. To effectively deliver a protein
systemically this barrier can be modulated by the presence of
permeation enhancers [1].

Quantitative Structural Activity Relationship, QSAR methods
have been applied extensively for exploration of structural
properties of importance for oral absorption of new chemical
entities, e.g., QSAR models have been developed for permeability
[2] and solubility [3–5]. To our knowledge, no QSAR model for
permeation enhancement has previously been published.

Some permeation enhancers have specific mechanisms of
action, e.g., modulating the function of tight junctions in the
plasma membrane such as zona-occludens-toxin [6], EDTA [7] or
melittin [8]. However, the majority of permeation enhancers are
primarily surfactants and will non-specifically disrupt the lipid
bilayer packing of phospholipids in the epithelial membrane [1].
Surfactants are molecules having segregated lipophilic and
hydrophilic domains. Water soluble surfactants tend to pool in
the surfaces of water/air and water/lipid, lowering the surface ten-
sion. Lowering of surface tensions of water/air surfaces and the
ability to enhance the permeability across lipid bilayers correlated

http://dx.doi.org/10.1016/j.ejpb.2015.05.012
0939-6411/� 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: C6, sodium hexanoate; C8, sodium octanoate; c8G, octylglu-
coside; C10, sodium decanoate/caprate; c12PC, dodecylphosphocholine; c12GPC,
dodecanoylglycerophosphocholine; c14GP, myristoylglycerophosphate; CART, clas-
sification and regression tree; CDC, chenodeoxycholate; DDM, dodecylmaltoside;
EDTA, ethylenediaminetetraacetic acid; GCC, glycochenocholate; GH, glycyrrhiz-
inate; LCC, lauroylcarnitinechloride; LOO-CV, leave-one-out cross validation; MOE,
molecular operating environment; PCC, palmitoyl carnitine chloride; QSAR, quan-
titative structural activity relationship; SM, simomenine; RMSE, root mean square
error; rp, Pearsons correlation coefficient; rs, Spearman rank correlation coefficient;
SD, standard deviation; TEER, transepithelial electrical resistance; TDM, tetrade-
cylmaltoside; TDS, sodium tetradecyl sulphate; TDM, tetradodecyl maltoside; TC,
taurocholate; Tpot, TEER potency; UC, Ursocholate.
⇑ Corresponding author at: Insulin Pharmacology Research, Novo Nordisk A/S,

Novo Nordisk Park, 2760 Måløv, Denmark.
E-mail address: hare@novonordisk.com (H.H.F. Refsgaard).

European Journal of Pharmaceutics and Biopharmaceutics 94 (2015) 152–159

Contents lists available at ScienceDirect

European Journal of Pharmaceutics and Biopharmaceutics

journal homepage: www.elsevier .com/locate /e jpb

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejpb.2015.05.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ejpb.2015.05.012
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hare@novonordisk.com
http://dx.doi.org/10.1016/j.ejpb.2015.05.012
http://www.sciencedirect.com/science/journal/09396411
http://www.elsevier.com/locate/ejpb


well for a selection of surfactant-like permeation enhancers [9].
General relations between molecular structures and physicochem-
ical properties of surfactants are thoroughly described by Rosen
[10]. Several properties of surfactants, including surface pressure,
have previously been modelled with a QSAR approach applying
both linear regression and non-linear machine learning models
as artificial neural networks, support vector machine or random
forest [5,11,12]. Combining the above mentioned concepts, it
seems plausible that a QSAR-model of surfactant-like permeation
enhancement could be constructed.

Our modelling is based on a Caco-2 data set for 41 surfactant
permeation enhancers from Whitehead [13,14] tested in cell
monolayers across three concentrations. Hereby, trade-offs
between potency, pathway and safety amongst a selection of
mainly surfactant-like permeation enhancers were investigated.
For this article only the potency data was used. In vitro Caco-2
monolayers are cultures of functional, differentiated enterocytes
and are widely employed to evaluate permeability rates of drug
candidates or pre-formulations [15]. The Caco-2 data for perme-
ation enhancers from Whitehead [13,14] together with molecular
descriptors calculated from structure of these surfactants were
the basis for the QSAR model.

Non-linear machine learning models can have superior predic-
tive capabilities compared to classical statistical explanatory mod-
elling. However, such machine learning models are often complex
‘‘black boxes’’ – difficult to interpret and discuss [16]. This article
presents a promising method to elucidate the interplay of features
comprising good permeation enhancers within the complex
non-linear model of random forest. Therefore, based on the devel-
oped model, we here can recommend ranges of the selected molec-
ular descriptors to obtain high permeation enhancement potency.

2. Materials and methods

2.1. Materials

Caco-2 cells (ATTC-HTB-37) were obtained from American Type
Culture Collection (Manassas, VA). Cell culture media (Dulbecco’s
modified essential media (DMEM)) and penicillin/streptomycin
were purchased from Lonza (Verviers, Belgium). All other supple-
ments (i.e., foetal bovine serum, HEPES buffer and non-essential
amino acids (NEAA)) as well as Hanks’ balanced salt solution
(HBSS) and trypsin were purchased from Gibco, Life Technologies
(Carlsbad, CA). Corning Transwell� filter inserts (1.12 cm2 surface
area, 0.4 lm pore diameter) were purchased from Fisher
Scientific (Waltham, MA). Bovine serum albumin (BSA) was pur-
chased from Sigma Aldrich (St. Louis, MO). All other reagents were
of the highest analytical grade.

2.2. Cell culture and TEER measurements

Caco-2 cells (passage numbers 41–49) were seeded at a density
of 2.5 � 105 cells/flask and grown to 70–90% confluence in DMEM
(supplemented with 10% FBS, 100 U/ml penicillin and 100 lg/ml
streptomycin and 1% (v/v) NEAA). For transport studies, Caco-2
monolayers were cultured on permeable Transwell� 12 mm diam-
eter inserts at a density of 105 cells/cm2 and used after 14–17 days
in culture. Cells were cultured at 37 �C and 5% CO2 atmosphere and
the medium was changed every other day. Monolayers were equi-
librated in HBSS-based transport buffer 1 h prior to testing.
Transepithelial electrical resistance (TEER) was measured with a
chop-stick electrode (Millicell-ERS�, Millipore, Billerica, MA) prior
to testing, and monolayers with TEER values <600 X cm2 were dis-
carded. TEER was measured after 1 h exposure to permeation
enhancers.

3. Data processing

3.1. Training set

Whitehead et al., tested the ability of 51 permeation enhancers
to lower the barrier integrity marker %TEER in Caco-2 cells at 1%,
0.1% and 0.01% (w/v) and published the data set as supplementary
materials in two papers [13,14]. Of the 51 permeation enhancers
reported, forty-two had computable molecular structures
(non-mixtures) and were a wide selection of enhancers which
were ascribed to 10 different categories of surfactants: Anionic sur-
factants, cationic surfactants, zwitterionic surfactants, non-ionic
surfactants, bile salts, fatty acids, fatty esters, fatty amines, sodium
salts of fatty acids, nitrogen-containing rings and others [13]. EDTA
(a calcium chelator) was excluded from the training set because of
a non-surfactant-like mechanism together with high potency. The
remaining 41 permeation enhancers had surfactant-like structures
or low potency e.g., urea could be described as an ineffective
surfactant without permeation enhancement effect.

TEER-potency (Tpot) was defined to concatenate measurements
of TEER%-decrease (EP) at the three different concentrations
(0.01%, 0.1% and 1% w/v) into one target variable. Tpot was simply
defined as the mean TEER%-decrease across the three concentra-
tions as given in Eq. (1). Tpot = 1 corresponds to a permeation
enhancer lowering TEER% completely at 0.01% (w/v) and Tpot = 0
translates to no effect of a permeation enhancer on TEER% even
at 1% (w/v). The TEER%-decrease EP is defined as in Eq. (2) and
depends of the TEER% before and after treatment with enhancer
plus TEER%+ the background filter resistance.

Tpot ¼
EP½0:01%� þ EP½0:1%� þ EP½1%�

3
ð1Þ

EP ¼ 1� TEER%AE � TEER%þ
TEER%noAE � TEER%þ

ð2Þ

From a statistical point of view the loss of information is mini-
mal, as the TEER%-values of the three concentrations were highly
correlated. The loadings of the first principal component of a prin-
cipal component analysis resembled the definition of Tpot and this
principal component explained 71% of the variance. From a practi-
cal viewpoint Tpot could be seen as a linear approximation of pEC50
(�log effective concentration (w/v) of where 50% TEER-decrease is
observed), see Eq. (3). pEC50 itself is dimensionless.

Thus, for a given permeation enhancer having a potency of
pEC50 = 1 the corresponding value of Tpot = 0.5.

Tpot ¼
pEC50þ 0:5

3
; for pEC50 2 ½�0:5; 2:5� ð3Þ

3.2. Software packages, descriptors and model design

The open source R statistical software (v 3.02) was acquired
freely from http://www.r-project.org and Rstudio integrated devel-
opment environment (v 0.98.501) also acquired freely from http://
www.rstudio.com. The R-package ‘randomForest’ (v.4.6) [17,18]
was used in the random forest-QSAR model. CAS identification
numbers of compounds in the training set were converted to
mol-files through SciFinder [19]. Mol-files bundled in sdf-files
were imported to the software application MOE [20] and sequen-
tially pre-processed with the following functions: ‘wash’ (simulat-
ing an ideal solubilised molecular form), ‘partial charges MMFFA96x’
calculating the electron densities necessary for a number of
descriptor algorithms, and finally ‘energy minimize’ relaxing the
molecule in the minimum state. All 2D molecular descriptors pro-
vided by MOE were computed. The subgroup of 3D descriptors
‘vsurf’ [21] plus the single 3D descriptor ‘dipole’ were calculated
as they were relatively fast to compute and therefore suitable for
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