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a b s t r a c t

We introduce the notion of a multivalued causal operator and consider an abstract Cauchy
problem in a Banach space for various classes of functional inclusionswith causal operators.
The methods of the topological degree theory for condensing maps are applied to obtain
local and global existence results for this problem and to study the continuous dependence
of a solution set on initial data. As application we generalize some existence results for
semilinear functional differential inclusions and Volterra integro-differential inclusions
with delay.
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1. Introduction

At the present time the study of systems governed by differential and functional equations with causal operators attracts
much attention. The term causal arises from the engineering and the notion of a causal operator turns out to be a powerful
tool for unifying problems in ordinary differential equations, integro-differential equations, functional differential equations
with finite or infinite delay, Volterra integral equations, neutral functional equations, etc. (see the monograph [1]). Various
problems for functional differential equations with causal operators were considered in recent papers [2–5]. In particular,
the existence, uniqueness, and continuous dependence of solutions to Cauchy problem in a Banach space are studied in [2,5].

In the present paper we introduce the notion of a multivalued causal operator and consider an abstract Cauchy problem
in a Banach space for various classes of functional inclusions with causal operators. The methods of the topological degree
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theory for condensing maps are applied to obtain local and global existence results for this problem and to study the
continuous dependence of a solution set on initial data. As application we generalize some existence results for semilinear
functional differential inclusions and Volterra integro-differential inclusions with delay.

The paper is organized as follows. In the next section we present necessary information from the theory of condensing
multivalued maps. Further, we introduce the notion of a multivalued causal operator and illustrate it by certain examples.
In Section 3 we formulate the abstract Cauchy problem for a functional inclusion containing the composition of multivalued
and single-valued causal operators. We study the properties of themultioperator whose fixed points induce solutions of the
problem. In particular, sufficient conditions under which this multioperator is condensing are presented. On this basis, in
Section 4 we give local and global existence results and describe the continuous dependence of the solution set on initial
data. In Section 5 the case of inclusions with lower semicontinuous causal multioperators is considered. In the last section,
applying abstract results, we generalize some existence results for semilinear functional differential inclusions and Volterra
integro-differential inclusions with delay in a Banach space.

2. Preliminaries

2.1. Multimaps and measures of noncompactness

Let X be a metric space, Y a Banach space, and P(Y ) denote the collection of all nonempty subsets of Y . We denote

C(Y ) = {D ∈ P(Y ) : D is closed};
Cv(Y ) = {D ∈ C(Y ) : D is convex},
K(Y ) = {D ∈ P(Y ) : D is compact};
Kv(Y ) = {D ∈ K(Y ) : D is convex}.

We recall some notions (see e.g. [6,7] for further details).

Definition 1. A multivalued map (multimap) F : X → P(Y ) is

(i) upper semicontinuous (u.s.c.) if F −1(V) = {x ∈ X : F (x) ⊂ V} is an open subset of X for every open set V ⊂ Y ;

(ii) lower semicontinuous (l.s.c.) if F −1(W) is a closed subset of X for every closed set W ⊂ Y ;

(iii) closed, if its graph GF = {(x, y) : x ∈ X, y ∈ F(x)} is a closed subset of X × Y .

In what follows we will need the following property.

Proposition 1 (Theorem 1.1.12 of [7]). Let a closed multimap F : X → K(Y ) be quasicompact, i.e., for each compact set K ⊂ X
the set F (K) = ∪x∈K F(x) is relatively compact in Y . Then the multimap F is u.s.c.

Sometimes we will denote a multimap by the symbol F : X ( Y .

Definition 2. AmultifunctionF : [a, b] ⊂ R → K(Y ) is said to be stronglymeasurable if there exists a sequenceFn : [a, b]
→ K(Y ), n = 1, 2, . . . of step multifunctions such that

lim
n→∞

h(Fn(t),F (t)) = 0 for µ− a.e. t ∈ [a, b],

where µ denotes the Lebesgue measure on [a, b] and h is the Hausdorff metric on K(Y ).

Definition 3. Let E be a Banach space and (A,≥) a partially ordered set. A function β : P(E) → A is called a measure of
noncompactness (MNC) in E if

β(coΩ) = β(Ω) for everyΩ ∈ P(E).

A MNC β is called

(i) monotone, ifΩ0,Ω1 ∈ P(E),Ω0 ⊆ Ω1 implies β(Ω0) ≤ β(Ω1);
(ii) nonsingular, if β({e} ∪Ω) = β(Ω) for every e ∈ E ,Ω ∈ P(E);
(iii) invariant with respect to union with compact sets, if β({K} ∪ Ω) = β(Ω) for every relatively compact set K ⊂ E ,

Ω ∈ P(E);
(iv) real, if A is [0,+∞)with the natural order. If A is a cone in a normed space, we say that the MNC β is
(v) algebraically semiadditive if β(Ω0 +Ω1) ≤ β(Ω0)+ β(Ω1) for everyΩ0,Ω1 ∈ P(E);
(vi) regular, if β(Ω) = 0 is equivalent to the relative compactness ofΩ.

As an example of MNC satisfying all the above properties we can consider
the Hausdorff MNC

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.
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