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a b s t r a c t

We use the Brouwer degree to establish the existence of real eigenpairs of higher order
real tensors in various settings. Also, we provide some finer criteria for the existence of
real eigenpairs of two-dimensional real tensors and give a complete classification of the
Brouwer degree zero and ±2 maps induced by general third order two-dimensional real
tensors.
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1. Introduction

Let R be the real field, we consider anm-order n-dimensional tensor A consisting of nm entries in R:

A = (ai1···im), ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

To an n-vector x = (x1, . . . , xn), real or complex, we define an n-vector:

Axm−1
:=


n−

i2,...,im=1

aii2···imxi2 · · · xim


1≤i≤n

.

The following were first introduced and studied by Qi [1–3] and Lim [4].

Definition 1.1. Let A be an m-order n-dimensional real tensor. Assume that Axm−1 is not identically zero. We say (λ, x) ∈

C × (Cn
\ {0}) is an eigenpair if they satisfy the equation Axm−1

= λx[m−1], where x[m−1]
= (xm−1

1 , . . . , xm−1
n ). We say it is

an H-eigenpair if they are both real.

Definition 1.2. Let A be an m-order n-dimensional real tensor. Assume that Axm−1 is not identically zero. We say (λ, x) ∈

C × (Cn
\ {0}) is an E-eigenpair if they satisfy the equation Axm−1

= λx. We say it is a Z-eigenpair if they are both real.

The above notions of eigenvalues were generalized by [5] as follows.

Definition 1.3. Let A and B be two m-order n-dimensional real tensors. Assume that both Axm−1 and Bxm−1 are not
identically zero. We say (λ, x) ∈ C × (Cn

\ {0}) is an eigenvalue–eigenvector of A relative to B, if the n-system of
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equations:

(A − λB)xm−1
= 0,

i.e.
n−

i2,...,im=1

(Aii2···im − λBii2···im)xi2 · · · xim = 0, i = 1, 2, . . . , n

possesses a solution.

Remark 1.4. If B = I, the unit tensor I = (δi1···im), then the B-eigenvalues are the eigenvalues and the real B-eigenpairs
are the H-eigenpairs.

For m = 2ℓ and let I2 be the n × n unit matrix. If B = Iℓ2 , the tensor product of ℓ copies of the unit matrices I2, then the
B-eigenvalues are the E-eigenvalues, and the real B-eigenpairs are called the Z-eigenpairs [1–3].

Previously, some results regarding the existence of H and Z eigenpairs have been established. We list a few here for
reference.

Theorem 1.5 (Corollary 3.7[5]). If A is symmetric with m even, then A has at least n H – resp. Z – eigenvalues counting
multiplicities with n distinct pairs of H (resp. Z) eigenvectors.

Theorem 1.6 (Generalized Perron–Frobenius Weak Version [6]). If A is a nonnegative tensor of order m and dimension n, then
there exist λ0 ≥ 0 and a nonnegative vector x0 ≠ 0 such that Axm−1

0 = λ0x
[m−1]
0 .

Theorem 1.7 (Generalized Perron–Frobenius Strong Version [6]). If A is an irreducible nonnegative tensor of order m and
dimension n, then the pair (λ0, x0) in the previous theorem satisfies the following conditions:
1. The eigenvalue λ0 is positive.
2. The eigenvector x0 is positive, i.e. all components of x0 are positive.
3. If λ is an eigenvalue with nonnegative eigenvector, then λ = λ0. Moreover, the nonnegative eigenvector is unique up to a

multiplicative constant.
4. If λ is an eigenvalue of A, then |λ| ≤ λ0.

However, if we drop either the symmetry or the nonnegativeness assumption on A, the existence of H-eigenpair has
not yet been proven. As for the Z-eigenvalue problem, it was shown in [7], for m > 2, the degree of the Z-characteristic
polynomial of a generic tensor A is dZ = ((m − 1)n − 1)/(m − 2) = (m − 1)n−1

+ (m − 1)n−2
+ · · · + (m − 1) + 1, so

it is easily seen that when m is odd or n is odd, dZ is odd and hence has a Z-eigenpair. However, when dealing with a pair
of tensors A and B in general, the degree of the generalized characteristic polynomial is difficult to determine. The main
purpose of this paper is to use the Brouwer degree to overcome this obstacle.

2. A brief review of the Brouwer degree

In this section, we review and prove some basic facts regarding the Brouwer degree of a map.

Definition 2.1. Let f : Sn → Sn be a continuous map. The degree of f , denoted deg f ∈ Z, is the integer such that f∗([a]) =

(deg f )[a] for all [a] ∈ Hn(Sn; Z) ∼= Z.

Twomaps f , g : Sn → Sn have the same degree if and only if they are homotopic. Furthermore, the constantmap has degree
zero, the identity map has degree one, and the antipodal map has degree (−1)n+1. We now prove the following, which is a
generalization of the well-known Brouwer fixed point theorem from algebraic topology.

Lemma 2.2. Let f , g : Sn−1
→ Sn−1 be two continuous maps such that at least one of them is not null-homotopic. If n is odd,

then ∃ x0 ∈ Sn−1 such that f (x0) = g(x0) or f (x0) = −g(x0).

Proof. We argue contrapositively. Suppose ∀x ∈ Sn−1, f (x) ± g(x) ≠ 0. So for all 0 ≤ t ≤ 1, tf (x) ± (1 − t)g(x) ≠ 0.
Without loss of generality, we may assume that g is not null-homotopic, i.e. deg g ≠ 0. It follows, via the homotopy
tf (x)+(1−t)g(x)

‖tf (x)+(1−t)g(x)‖ , that f is homotopic to g , which implies deg f = deg g . On the other hand, f is homotopic to −g via the

homotopy tf (x)−(1−t)g(x)
‖tf (x)−(1−t)g(x)‖ , which implies deg f = (−1)n deg g . Since deg g ≠ 0, this can happen only if n is even. �

Using the same argument, we can show the following lemma.

Lemma 2.3. If f , g : Sn−1
→ Sn−1 are two continuous maps such that deg f ≠ ± deg g, then ∃ x0 ∈ Sn−1 such that

f (x0) = g(x0) or f (x0) = −g(x0).

Again by the same argument, we have the following.

Theorem 2.4 (Brouwer). If f : Sn−1
→ Sn−1 is continuous with deg f ≠ (−1)n, then f must have a fixed point.
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