Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Positive entire stable solutions of inhomogeneous semilinear elliptic equations

Soohyun Bae^{a,*}, Kijung Lee^b

^a Faculty of Liberal Arts and Sciences, Hanbat National University, Daejeon 305-719, Republic of Korea ^b Department of Mathematics, Ajou University, Suwon 443-749, Republic of Korea

ARTICLE INFO

Article history: Received 13 April 2010 Accepted 12 July 2011 Communicated by Ravi Agarwal

Keywords: Inhomogeneous semilinear elliptic equations Positive entire solutions Asymptotic behavior Stability Weak asymptotic stability

ABSTRACT

For $n \ge 3$ and p > 1, the elliptic equation $\Delta u + K(x)u^p + \mu f(x) = 0$ in \mathbb{R}^n possesses a continuum of positive entire solutions, provided that (i) locally Hölder continuous functions K and f vanish rapidly, for instance, K(x), $f(x) = O(|x|^l)$ near ∞ for some l < -2and (ii) $\mu \ge 0$ is sufficiently small. Especially, in the radial case with K(x) = k(|x|) and f(x) = g(|x|) for some appropriate functions k, g on $[0, \infty)$, there exist two intervals $I_{\mu,1}$, $I_{\mu,2}$ such that for each $\alpha \in I_{\mu,1}$ the equation has a positive entire solution u_{α} with $u_{\alpha}(0) = \alpha$ which converges to $l \in I_{\mu,2}$ at ∞ , and $u_{\alpha_1} < u_{\alpha_2}$ for any $\alpha_1 < \alpha_2$ in $I_{\mu,1}$. Moreover, the map α to l is one-to-one and onto from $I_{\mu,1}$ to $I_{\mu,2}$. If $K \ge 0$, each solution regarded as a steady state for the corresponding parabolic equation is stable in the uniform norm; moreover, in the radial case the solutions are also weakly asymptotically stable in the weighted uniform norm with weight function $|x|^{n-2}$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the elliptic equation

 $\Delta u + K(x)u^p + \mu f(x) = 0$

and its entire solutions, where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator. By an entire solution of (1.1) we mean a positive weak solution of (1.1) in \mathbf{R}^n which satisfies (1.1) pointwise in $\mathbf{R}^n \setminus \{0\}$. Throughout this paper we assume that

Assumption 1.1. $n \ge 3$, p > 1, $\mu \ge 0$ is a constant, and *K*, *f* are locally Hölder continuous functions in $\mathbb{R}^n \setminus \{0\}$.

Liouville's theorem says that a bounded entire solution to the harmonic equation $\Delta u = 0$ in \mathbb{R}^n must be constant. As we consider (1.1) as a nonlinear and inhomogeneous perturbation of harmonic equation, we expect similar behavior. The simplest case is when *K* and *f* have compact support or vanish rapidly near ∞ , which for the homogeneous equation with f = 0, usually means that

$$K(x) = O(|x|^{l}),$$
 (1.2)

at ∞ for some l < -2. Under this assumption, Ni in [1] studied

 $\Delta u + K(x)u^p = 0,$

(1.1)

(1.3)

^{*} Corresponding author. Tel.: +82 42 821 1369; fax: +82 42 821 1599. E-mail addresses: shbae@hanbat.ac.kr (S. Bae), kijung@ajou.ac.kr (K. Lee).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.07.022

and found infinitely many positive entire solutions which converge to positive constants at ∞ . More precisely, these are countably many separated solutions by his construction in the proof. Furthermore, combining this fact and Lemma 2.5 in [2], one may conclude that if *K* is a radially symmetric nonnegative function satisfying (1.2), then there exists $\alpha^* \in (0, \infty]$ such that for each $0 < \alpha < \alpha^*$, (1.3) has a positive radial entire solution u_α with $u_\alpha(0) = \alpha$ satisfying

$$u_{rr} + \frac{n-1}{r}u_r + K(r)u^p = 0, (1.4)$$

where u(x) = u(|x|) and r = |x|; moreover, $0 < u_{\alpha} < u_{\beta}$ for any $0 < \alpha < \beta < \alpha^*$.

However, the existence of a continuum of positive entire solutions for (1.1) under the presence of inhomogeneous term f is still an open question. Meanwhile Naito [3] considered the non-radial case under certain assumptions on K and established that there exists a positive constant δ such that for every $l \in (0, \delta)$, (1.3) has a positive entire solution with $u(x) \rightarrow l$ as $|x| \rightarrow \infty$.

As the first aim of this paper, we extend Naito's result to case (1.1). The formulation is as follows.

Assumption 1.2. There exist continuous functions κ , β on $(0, \infty)$ such that

$$|K(x)| \leq \kappa(|x|), \qquad |f(x)| \leq \beta(|x|), \qquad \int_0^\infty t\kappa(t) dt =: A < \infty, \qquad \int_0^\infty t\beta(t) dt =: F < \infty.$$

Remark 1.3. Assumption 1.2, in particular, includes case (1.2) with l < -2.

Theorem 1.4. Under Assumptions 1.1 and 1.2, there exists a strictly positive constant μ^* depending only on n, p, A, F such that for any $\mu \in [0, \mu^*)$ we have an interval I_{μ} and for any $l \in I_{\mu}$ there exists a positive entire solution u of (1.1) satisfying $u(x) \rightarrow l$ as $|x| \rightarrow \infty$. In fact, we take

$$0 < \mu_* := \sup\{\mu \in [0, \bar{\mu}) : a_\mu < b_\mu\}, \qquad \bar{\mu} = \left(\frac{n-2}{p}\right)^{\frac{p}{p-1}} \cdot A^{-\frac{1}{p-1}} \cdot F^{-1}$$
(1.5)

and for $\mu \in [0, \mu^*)$ we set $I_{\mu} = (a_{\mu}, b_{\mu}]$ by the smallest nonnegative root of $a_{\mu} = a(n, p, A, F, \mu)$ the equation of the unknown $l, l = (n-2)^{-1}(Al^p + \mu F)$ and $b_{\mu} := \left(1 - \frac{1}{p}\right) \left(\frac{n-2}{pA}\right)^{\frac{1}{p-1}} - \frac{\mu F}{n-2}$.

We are to check if μ_* and I_{μ} are well defined.

Remark 1.5. The quantity $\bar{\mu}$ is the supremum among μ for which b_{μ} is positive. We note that $a_0 = 0 < b_0 = \left(1 - \frac{1}{p}\right) \left(\frac{n-2}{pA}\right)^{\frac{1}{p-1}}$ when $\mu = 0$. Moreover, a_{μ} is continuous and strictly increasing as μ increases whereas b_{μ} is continuous and strictly decreasing. Hence, μ_* exists as a strictly positive constant. The intervals I_{μ} are set in a way that, as long as $\mu \in [0, \mu_*)$, for any $l \in I_{\mu}$ the following holds:

l > 0, $l - (n - 2)^{-1}(Al^p + \mu F) > 0$, $l = c - (n - 2)^{-1}(Ac^p + \mu F)$ for some c > 0.

The second objective of this paper is to show that (1.1) in the radial case

$$u_{rr} + \frac{n-1}{r}u_r + k(r)u^p + \mu g(r) = 0, \quad u = u(r),$$
(1.6)

has the structure of partial separation, meaning that there exists an interval $(\alpha_{\mu}, \beta_{\mu})$ with $0 \le \alpha_{\mu} < \beta_{\mu} \le \infty$ such that (1.6) possesses an entire solution u_{ξ} for each ξ in an interval $(\alpha_{\mu}, \beta_{\mu})$ and any two of them do not intersect. The formulation is as follows.

Theorem 1.6. Under Assumptions 1.1 and 1.2 in the radial case with K(x) = k(|x|) and f(x) = g(|x|), there exists μ_0 such that, for any $\mu \in [0, \mu_0)$, we have two intervals $I_{\mu,1}$, $I_{\mu,2}$ in $(0, \infty]$ such that for each $\alpha \in I_{\mu,1}$ Eq. (1.6) has a positive entire solution u_{α} with $u_{\alpha}(0) = \alpha$ which converges to $l \in I_{\mu,2}$ at ∞ and $u_{\alpha_1} < u_{\alpha_2}$ for any $\alpha_1 < \alpha_2$ in $I_{\mu,1}$. Moreover, the map α to l is one-to-one and onto from $I_{\mu,1}$ to $I_{\mu,2}$.

In the proof of Theorem 1.6 the main ingredient is Proposition 6.1 in [4]; in fact, Theorem 1.6 is an extension of the proposition.

Third, we also consider the stability of solutions of the Cauchy problem:

$$\begin{cases} u_t = \Delta u + K(x)u^p + f(x) & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = \phi(x) & \text{in } \mathbb{R}^n. \end{cases}$$
(1.7)

Download English Version:

https://daneshyari.com/en/article/841430

Download Persian Version:

https://daneshyari.com/article/841430

Daneshyari.com