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a b s t r a c t

Motivated by the recent known results about the solvability and existence of asymptoti-
cally stable solutions for nonlinear functional integral equations in spaces of functions de-
fined on unbounded intervals with values in the n-dimensional real space, we establish
asymptotically stable solutions for a nonlinear functional integral equation in the space of
all continuous functions on R+ with values in a general Banach space, via a fixed point the-
orem of Krasnosel’skii type. In order to illustrate the result obtained here, an example is
given.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the solvability and the existence of asymptotically stable solutions for the following nonlinear
functional integral equation:

x(t) = q(t) + f (t, x(t)) +

∫ t

0
V


t, s, x(s),

∫ s

0
V1 (t, s, r, x(r)) dr


ds

+

∫
∞

0
G


t, s, x(s),

∫ s

0
G1 (t, s, r, x(r)) dr


ds, t ∈ R+, (1.1)

where q : R+ → E; f : R+ × E → E; V : ∆ × E2
→ E; V1 : ∆1 × E → E;G : R2

+
× E2

→ E;G1 : R+ × ∆ × E → E are
supposed to be continuous and ∆ = {(t, s) ∈ R2

+
: s ≤ t}, ∆1 = {(t, s, r) ∈ R3

+
: r ≤ s ≤ t} and E is a general Banach

space.
Nonlinear functional integral equations with bounded intervals or unbounded intervals have been studied extensively

bymany authors using variousmethods and techniques. There aremany important results about the existence, stability and
other properties of solutions; for example, we refer the reader to [1–17] and the references given therein.
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Our results improve and generalize in part the results recently established in [1,2,6,11], for E = Rd. In [1,2], Avramescu
and Vladimirescu have proved the existence of asymptotically stable solutions to the following integral equations:

x(t) = q(t) + f (t, x(t)) +

∫ t

0
V (t, s)x(s)ds +

∫ t

0
G(t, s, x(s))ds, t ∈ R+, (1.2)

or

x(t) = q(t) +

∫ t

0
K(t, s, x(s))ds +

∫
∞

0
G(t, s, x(s))ds, t ∈ R+, (1.3)

where the functions given with real values are supposed to be continuous, satisfying suitable conditions. In the proofs, the
following fixed point theorem of Krasnosel’skii type is used (see [1,2]).

Also applying a fixed point theorem of Krasnosel’skii type and giving the suitable assumptions, Dhage and Ntouyas [6],
Purnaras [11] obtained some results on the existence of solutions to the following nonlinear functional integral equation:

x(t) = q(t) +

∫ µ(t)

0
k(t, s)f (s, x(θ(s)))ds +

∫ σ(t)

0
v(t, s)g(s, x(η(s)))ds, t ∈ [0, 1], (1.4)

where E = R, 0 ≤ µ(t) ≤ t; 0 ≤ σ(t) ≤ t; 0 ≤ θ(t) ≤ t; 0 ≤ η(t) ≤ t, for all t ∈ [0, 1]. Purnaras also shows that the
technique used in [11] can be applied to yield existence results for the following equation:

x(t) = q(t) +

∫ µ(t)

α(t)
k(t, s)f (s, x(θ(s)))ds

+

∫ λ(t)

β(t)

k(t, s)F 
s, x(ν(s)),

∫ σ(s)

0
k0(s, v, x(η(v)))dv


ds, t ∈ [0, 1]. (1.5)

For the case where the Banach space E is arbitrary, in [9], the existence of asymptotically stable solutions of the integral
equation

x(t) = q(t) + f (t, x(t), x(π(t))) +

∫ t

0
V (t, s, x(s), x(σ (s)))ds +

∫ t

0
G(t, s, x(s), x(χ(s)))ds, t ∈ R+, (1.6)

was proved by using the fixed point theorem of Krasnosel’skii type that follows.

Theorem 1.1. Let (X, |·|n) be a Fréchet space and let U, C : X → X be two operators.
Assume that:

(i) U is a k-contraction operator, with k ∈ [0, 1) (depending on n), with respect to a family of seminorms ‖·‖n equivalent to the
family |·|n;

(ii) C is completely continuous;
(iii) lim|x|n→∞

|Cx|n
|x|n

= 0, ∀n ∈ N.

Then U + C has a fixed point.

Also applying Theorem 1.1 and adding some suitable conditions, we also get the same results for (1.1) as were obtained
for (1.6) in [9]. On the other hand, the proof is obtained by combination of the arguments in [9], some techniques in [1,2]with
appropriate modifications and, especially, the arguments of density. The paper consists of four sections, and the existence
of solutions and the existence of asymptotically stable solutions for (1.1) will be presented in Sections 2 and 3. Finally, we
give an illustrated example.

2. The existence of solutions

Let X = C(R+; E) be the space of all continuous functions on R+ to E which are equipped with the denumerable family
of seminorms

|x|n = sup
t∈[0,n]

|x(t)| , n ≥ 1.

Then (X, |·|n) is complete in the metric

d(x, y) =

∞−
n=1

2−n |x − y|n
1 + |x − y|n

and X is the Fréchet space. Consider in X the other family of seminorms ‖·‖n, defined as follows:

‖x‖n = |x|γn + |x|hn , n ≥ 1,
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