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a b s t r a c t

We propose notions of higher-order outer and inner radial derivatives of set-valued maps
andobtainmain calculus rules. Somedirect applications of these rules in proving optimality
conditions for particular optimization problems are provided. Then we establish higher-
order optimality necessary conditions and sufficient ones for a general set-valued vector
optimizationproblemwith inequality constraints. A number of examples illustrate both the
calculus rules and the optimality conditions. In particular, they explain some advantages
of our results over earlier existing ones and why we need higher-order radial derivatives.
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1. Introduction and preliminaries

In nonsmooth optimization, a large number of generalized derivatives have been introduced to replace the classical
Fréchet andGateaux derivatives tomeet the continually increasing diversity of practical problems.We can recognize roughly
two approaches: primal space and dual space approaches. Coderivatives, limiting subdifferentials and other notions in the
dual space approach enjoy rich and fruitful calculus rules and little depend on convexity assumptions in applications; see
e.g. the excellent book [1,2]. The primal space approach has beenmore developed so far, partially since it ismore natural and
exhibits clear geometrical interpretations. Most generalized derivatives in this approach are based on linear approximations
and kinds of tangency. Hence, approximating cones play crucial roles. One of the early and most important notions are the
contingent cone and the corresponding contingent derivative; see [3,4]. For a subset A of a normed space X , the contingent
cone of A at x̄ ∈ cl A is

TA(x̄) = {u ∈ X : ∃tn → 0+, ∃un → u, ∀n, x̄ + tnun ∈ A}.
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However, they capture only the local nature of sets andmappings and are suitable mainly for convex problems. The (closed)
radial cone of A at x̄ ∈ cl A is defined by

RA(x̄) = cone(A − x̄) = {u ∈ X : ∃tn > 0, ∃un → u, ∀n, x̄ + tnun ∈ A}

and carries global information about A. We have TA(x̄) ⊆ RA(x̄) and this becomes equality if A is convex (in fact, we need
A being only star-shape at x̄). Hence, the corresponding radial derivative, first proposed in [5], is proved to be applicable to
nonconvex problems and global optimal solutions. In [6,7], radial epiderivatives were introduced, taking some advantages
of other kinds of epiderivatives; see e.g. [4,8]. A modified definition was included in [9], making the radial epiderivative a
notion exactly corresponding to the contingent epiderivative defined in [4,8], to avoid some restrictive assumptions imposed
in [6,7]. Radial epiderivatives were applied in [10] to get optimality conditions for strict minimizers.

To obtain more information for optimal solutions, higher-order (generalized) derivatives and higher-order optimality
conditions have been intensively developed recently; see e.g. [11–15]. However, such contributions are still much fewer
than the first and second-order considerations. Of course, only a number of generalized derivatives may have higher-order
generalizations. As far as we know, the radial derivative has not had higher-order extensions so far. This is a motivation for
our present work.

To meet various practical situations, many optimality (often known also as efficiency) notions have been introduced and
developed in vector optimization. Each above-mentioned paper dealt with only several kinds of optimality. There were also
attempts to classify solution notions in vector optimization. The Q -minimality proposed in [16] subsumes various types of
efficiency, from weak and ideal solutions to many properly efficient solutions. Hence, when applying higher-order radial
derivatives to establish optimality conditions, we start with Q -minimal solutions and then derive results for many other
kinds of efficiency.

The layout of the paper is as follows. In the rest of this section, we recall some definitions and preliminaries for our later
use. Section 2 includes definitions of higher-order outer and inner radial derivatives of set-valued mappings and their main
calculus rules. Some illustrative direct applications of these rules for obtaining optimality conditions in particular problems
are provided by the end of this section. The last section is devoted for establishing higher-order optimality conditions, in
terms of radial derivatives, in a general set-valued vector optimization problem.

In the sequel, let X, Y and Z be normed spaces, C ⊆ Y and D ⊆ Z be pointed closed convex cones with nonempty
interior. BX , BY stands for the closed unit ball in X, Y , respectively. For A ⊆ X, intA, cl A, bdA denote its interior, closure
and boundary, respectively. Furthermore, coneA = {λa | λ ≥ 0, a ∈ A}. For a cone C ⊆ Y , we define:

C∗
= {y∗

∈ Y ∗
| ⟨y∗, c⟩ ≥ 0, ∀c ∈ C},

C∗ i
= {y∗

∈ Y ∗
| ⟨y∗, c⟩ > 0, ∀c ∈ C \ {0}}

and, for u ∈ X, C(u) = cone(C + u). A convex set B ⊂ Y is called a base for C if 0 ∉ clB and C = {tb : t ∈ R+, b ∈ B}. For
H : X → 2Y , the domain, graph and epigraph of H are defined by

domH = {x ∈ X : H(x) ≠ ∅}, grH = {(x, y) ∈ X × Y : y ∈ H(x)},
epiH = {(x, y) ∈ X × Y : y ∈ H(x) + C}.

Throughout the rest of this section, let A be a nonempty subset of Y and a0 ∈ A. The main concept in vector optimization
is Pareto efficiency. Recall that a0 is a Pareto minimal point of A with respect to (w.r.t.) C(a0 ∈ Min(A, C)) if

(A − a0) ∩ (−C \ {0}) = ∅.

In this paper, we are concerned also with the following other concepts of efficiency.

Definition 1.1. (i) a0 is a strong (or ideal) efficient point of A (a0 ∈ StrMin(A, C)) if A − a0 ⊆ C .
(ii) Supposing that int C ≠ ∅, a0 is a weak efficient point of A (a ∈ WMin(A, C)) if (A − a0) ∩ (−int C) = ∅.
(iii) Supposing that C+i

≠ ∅, a0 is a positive-properly efficient point of A (a0 ∈ Pos(A, C)) if there exists ϕ ∈ C+i such that
ϕ(a) ≥ ϕ(a0) for all a ∈ A.

(iv) a0 is a Geoffrion-properly efficient point of A (a ∈ Ge(A, C)) if a0 ∈ Min(A, C) and there exists a constantM > 0 such
that, whenever there is λ ∈ C+ with norm one and λ(a− a0) > 0 for some a ∈ A, one can find µ ∈ C+ with norm one
such that

⟨λ, a − a0⟩ ≤ M⟨µ, a0 − a⟩.

(v) a0 is a Borwein-properly efficient point of A (a ∈ Bo(A, C)) if

clcone(A − a0) ∩ (−C) = {0}.

(vi) a0 is a Henig-properly efficient point of A (a0 ∈ He(A, C)) if there exists a convex cone K with C \ {0} ⊆ intK such
that (A − a0) ∩ (−intK) = ∅.

(vii) Supposing that C has a base B, a0 is a strong Henig-properly efficient point of A (a0 ∈ StrHe(A, B)) if there is a scalar
ϵ > 0 such that

clcone(A − a0) ∩ (−clcone(B + ϵBY )) = {0}.
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