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a b s t r a c t

LetΩ ⊂ Rn be a C2 bounded domain and χ > 0 be a constant. Wewill prove the existence
of constants λN ≥ λ∗

N ≥ λ∗(1 + χ

Ω

dx
1−w∗

)2 for the nonlocal MEMS equation −∆v =

λ/(1 − v)2(1 + χ

Ω
1/(1 − v)dx)2 inΩ , v = 0 on ∂Ω , such that a solution exists for any

0 ≤ λ < λ∗

N and no solution exists for any λ > λN where λ∗ is the pull-in voltage andw∗ is
the limit of the minimal solution of −∆v = λ/(1− v)2 inΩ with v = 0 on ∂Ω as λ ↗ λ∗.
Moreover λN < ∞ if Ω is a strictly convex smooth bounded domain. We will prove the
local existence and uniqueness of the solution of the parabolic nonlocal MEMS equation
ut = ∆u + λ/(1 − u)2(1 + χ


Ω
1/(1 − u)dx)2 in Ω × (0,∞), u = 0 on ∂Ω × (0,∞),

u(x, 0) = u0 inΩ . We prove the existence of a unique global solution and the asymptotic
behaviour of the global solution of the parabolic nonlocal MEMS equation under various
boundedness conditions on λ. We also obtain the quenching behaviour of the solution of
the parabolic nonlocal MEMS equation when λ is large.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Microelectromechanical systems (MEMS) arewidely usednowadays inmany electronic devices including accelerometers
for airbag deployment in cars, inkjet printer heads, and devices for the protection of hard disks, etc. The challenge is to build
and understand mathematical models and the mechanisms for the various MEMS devices. Recently there has been a lot of
study of the equations arising from MEMS by Esposito et al. [1–4], Kavallaris et al. [5], Lin and Yang [6], Ma and Wei [7],
Flores et al. [8–10] etc. Interested readers can read the book ‘‘Modeling MEMS and NEMS’’ [11], by Pelesko and Bernstein for
the mathematical modeling and various applications of MEMS devices.

In [11] Pelesko and Bernstein model the deflection between the two parallel plates of an electrostatic MEMS device with
the equation−1w =

λ

(1 − w)2
inΩ

w = 0 on ∂Ω
(Sλ)

where Ω ⊂ R2 is a bounded C2 domain. Interested readers can read the papers [2,5,6] for various results on the above
equation. In [6] Lin and Yang by using a variational argument derived the following nonlocal MEMS equation:

−1v =
λ

(1 − v)2

1 + χ


Ω

dx
1−v

2 inΩ

v = 0 on ∂Ω
(SNλ )
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for an electrostatic MEMS device with circuit series capacitance that models the deflection between a membrane and an
upper plate which is parallel to the plane containing the boundary of the membrane. An interesting property of (Sλ) [2,6]
is that there exists a λ∗ > 0, called the pull-in voltage in the literature on MEMS research, such that (Sλ) has a solution for
any 0 ≤ λ < λ∗ and no solution exists for any λ > λ∗. Physically this corresponds to the existence of a pull-in voltage such
that the membrane and the upper plate in the MEMS device collapse together [6,11], when λ which is proportional to the
square of the electric voltage between the membrane and the upper plate is greater than the pull-in voltage λ∗.

In this paper we will study the equation (SNλ ) and show that (SNλ ) has similar properties. Let χ > 0. We will study the
existence and non-existence of solutions of the corresponding nonlocal parabolic equation (cf. [11,12]),

∂u
∂t

= 1u +
λ

(1 − u)2

1 + χ


Ω

dy
1−u(y,t)

2 inΩ × (0, T )

u = 0 on ∂Ω × (0, T )
u(x, 0) = u0 inΩ

(Pλ)

where λ ≥ 0 is a constant. The above equation also appears in the unpublished preprint ‘‘Pull-in voltage and steady states
of nonlocal electrostatic MEMS’’ of Ghoussoub and Guo. We will prove the local existence and uniqueness of the solution
of (Pλ). Under some boundedness conditions for λ we prove the existence of a unique global solution and the asymptotic
behaviour of the global solution of (Pλ). We prove the quenching behaviour of the solution of (Pλ) for when u0 ≡ 0 on Ω
and λ is large. Physically this corresponds to the case where there is no deflection of the plates at the initial time t = 0 and
the applied voltage is large. We also prove the quenching behaviour of the solution of (Pλ) for whenΩ is a ball, u0 is radially
symmetric, and λ is large.

The plan of the paper is as follows. In Section 2wewill prove the existence of constants λN ≥ λ∗

N ≥ λ∗


1 + χ


Ω

dx
1−w∗

2
such that (SNλ ) has a solution for any 0 ≤ λ < λ∗

N and (SNλ ) has no solution for any λ > λN . We also prove the boundedness
of λN for when Ω is a strictly convex smooth bounded domain of Rn. In Section 3 we will prove the local existence and
uniqueness of the solution of (Pλ). We also obtain energy estimates for the solution of (Pλ). In Section 4 we prove the global
existence and asymptotic behaviour of the global solution of (Pλ) under various boundedness conditions on λ. In Section 5
we prove the quenching behaviour of the solution of (Pλ) for when λ is large.

We will assume thatΩ ⊂ Rn is a bounded C2 domain for the rest of the paper. We start with some definitions. For any
δ > 0, R > 0, let Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ} and BR = {x ∈ Rn

: |x| < R}. We say that w is a solution of (Sλ)
(respectively, (SNλ )) ifw ∈ C2(Ω) ∩ C(Ω), 0 ≤ w < 1 inΩ , satisfies (Sλ) (respectively, (SNλ )) in the classical sense.

For any constants χ ≥ 0, λ > 0, f ∈ C(Ω × (0, T )) and

u0 ∈ L1(Ω) with u0 ≤ a a.e. inΩ (1.1)

for some constant 0 < a < 1 we say that u is a solution (respectively, subsolution, supersolution) of
∂u
∂t

= 1u +
λf

(1 − u)2

1 + χ


Ω

dy
1−u(y,t)

2 inΩ × (0, T )

u = 0 on ∂Ω × (0, T )
u(x, 0) = u0 inΩ

inΩ × (0, T ) if u ∈ C2,1(Ω × (0, T )) ∩ C(Ω × (0, T )), 0 ≤ u < 1, satisfies
∂u
∂t

= 1u +
λf

(1 − u)2

1 + χ


Ω

dy
1−u(y,t)

2 inΩ × (0, T )

(respectively, ≤,≥) in the classical sense with u(x, t) = 0 (respectively, ≤,≥) on ∂Ω × (0, T ),

sup
Ω×[0,T ′]

u(x, t) < 1 ∀0 < T ′ < T ,

and

‖u(·, t)− u0‖L1(Ω) → 0 as t → 0. (1.2)

Let µ1 be the first positive eigenvalue and φ1 be the first positive eigenfunction of −∆ which satisfies

Ω
φ1dx = 1. For

any solution u of (Pλ)we define the quenching time Tλ > 0 as the time which satisfiessup
Ω

u(x, t) < 1 ∀0 < t < Tλ

lim
t↗Tλ

sup
Ω

u(x, t) = 1.

We say that u has a finite quenching time if Tλ < ∞ and we say that u quenches at time infinity if Tλ = ∞.
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