Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Coupled fixed point theorems for a generalized Meir–Keeler contraction in partially ordered metric spaces

Bessem Samet

Ecole Supérieure des Sciences et Techniques de Tunis, Département de Mathématiques, 5, Avenue Taha Hussein-Tunis, B.P.:56, Bab Menara-1008, Tunisie

ARTICLE INFO

Article history: Received 19 December 2009 Accepted 10 February 2010

MSC: 47H10 34B15

Keywords: Coupled fixed point Partially ordered set Generalized Meir-Keeler contraction Contraction of integral type

1. Introduction

ABSTRACT

Let *X* be a non-empty set and $F : X \times X \to X$ be a given mapping. An element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping *F* if F(x, y) = x and F(y, x) = y. In this paper, we consider the case when *X* is a complete metric space endowed with a partial order. We define generalized Meir–Keeler type functions and we prove some coupled fixed point theorems under a generalized Meir–Keeler contractive condition. Some applications of our obtained results are given. The presented theorems extend and complement the recent fixed point theorems due to Bhaskar and Lakshmikantham [T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393].

© 2010 Elsevier Ltd. All rights reserved.

The Banach contraction principle [1] is a classical and powerful tool in nonlinear analysis and has many generalizations; see [2–9] and others. Recently, Ran and Reurings [10], Bhaskar and Lakshmikantham [11], Nieto and Lopez [12], Agarwal, El-Gebeily and O'Regan [13] and Lakshmikantham and Ćirić [14] presented some new results for contractions in partially ordered metric spaces (see also [15–22]).

In [11], Bhaskar and Lakshmikantham introduced the notion of a coupled fixed point. More precisely, let X be a non-empty set and $F : X \times X \rightarrow X$ be a given mapping. An element $(x, y) \in X \times X$ is called a coupled fixed point of the mapping F if

 $F(x, y) = x, \qquad F(y, x) = y.$

They also introduced the notion of mixed monotone mapping. If (X, \leq) is a partially ordered set, the mapping *F* is said to have the mixed monotone property if

$$x_1, x_2 \in X, \qquad x_1 \le x_2 \Rightarrow F(x_1, y) \le F(x_2, y), \quad \forall y \in X$$

and

$$y_1, y_2 \in X$$
, $y_1 \leq y_2 \Rightarrow F(x, y_1) \geq F(x, y_2)$, $\forall x \in X$.

The main theoretical results of Bhaskar and Lakshmikantham in [11] are the following two coupled fixed point theorems.

Theorem 1.1 (Bhaskar and Lakshmikantham [11]). Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F : X \times X \to X$ be a continuous mapping having the mixed monotone property on X. Assume that there exists $k \in [0, 1)$ with

$$d(F(x, y), F(u, v)) \le \frac{k}{2} [d(x, u) + d(y, v)] \quad \text{for each } x \ge u \text{ and } y \le v.$$

$$\tag{1}$$

E-mail address: bessem.samet@gmail.com.

⁰³⁶²⁻⁵⁴⁶X/ $\$ - see front matter $\$ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.02.026

If there exist $x_0, y_0 \in X$ *such that*

$$x_0 \leq F(x_0, y_0)$$
 and $y_0 \geq F(y_0, x_0)$,

then there exist $x, y \in X$ such that

$$F(x, y) = x$$
 and $F(y, x) = y$.

Theorem 1.2 (Bhaskar and Lakshmikantham [11]). Let (X, \leq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Assume that X has the following property:

(i) if a non-decreasing sequence $\{x_n\} \rightarrow x$, then $x_n \leq x$ for all n,

(ii) if a non-increasing sequence $\{y_n\} \rightarrow y$, then $y \leq y_n$ for all n.

Let $F: X \times X \to X$ be a mapping having the mixed monotone property on X. Assume that there exists $k \in [0, 1)$ with

$$d(F(x, y), F(u, v)) \leq \frac{k}{2} [d(x, u) + d(y, v)] \text{ for each } x \geq u \text{ and } y \leq v.$$

If there exist $x_0, y_0 \in X$ *such that*

$$x_0 \leq F(x_0, y_0)$$
 and $y_0 \geq F(y_0, x_0)$,

then there exist $x, y \in X$ such that

F(x, y) = x and F(y, x) = y.

Bhaskar and Lakshmikantham [11] have also discussed the problems of a uniqueness of a coupled fixed point and applied their theorems to problems of the existence and uniqueness of solution for a periodic boundary value problem.

In [5], Meir and Keeler generalized the well known Banach fixed point theorem [1]as follows.

Theorem 1.3 (Meir–Keeler [5]). Let (X, d) be a complete metric space and $T : X \to X$ be a given mapping. Suppose that for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

$$x, y \in X, \quad \varepsilon \le d(x, y) < \varepsilon + \delta(\varepsilon) \Rightarrow d(Tx, Ty) < \varepsilon.$$
⁽²⁾

Then, T admits a unique fixed point $\xi \in X$ and for all $x \in X$, the sequence $\{T^n x\}$ converges to ξ .

In this paper, we extend and complement Theorems 1.1 and 1.2 of Bhaskar and Lakshmikantham [11] by replacing the contraction hypothesis (1) by a generalized Meir–Keeler contraction. The uniqueness of a coupled fixed point is also discussed. As applications, inspired with works of Branciari [3] and Suzuki [7], we obtain some coupled fixed point theorems for mappings satisfying a general contractive condition of integral type in complete partially ordered metric spaces.

2. Main results

2.1. Preliminaries and definitions

We start by introducing some definitions.

Definition 2.1. Let (X, \leq) be a partially ordered set and $F : X \times X \to X$ be a given mapping. We say F has the mixed strict monotone property if

$$x_1, x_2 \in X,$$
 $x_1 < x_2 \Rightarrow F(x_1, y) < F(x_2, y), \quad \forall y \in X$

and

$$y_1, y_2 \in X$$
, $y_1 < y_2 \Rightarrow F(x, y_1) > F(x, y_2)$, $\forall x \in X$.

Definition 2.2. Let (X, d) be a partially ordered metric space and $F : X \times X \to X$ be a given mapping. We say F is a generalized Meir–Keeler type function if for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

$$x \ge u, \ y \le v, \quad \varepsilon \le \frac{1}{2} [d(x, u) + d(y, v)] < \varepsilon + \delta(\varepsilon) \Rightarrow d(F(x, y), F(u, v)) < \varepsilon.$$
(3)

The following Proposition shows us that (1) is a particular case of (3).

Proposition 2.1. Let (X, d) be a partially ordered metric space and $F : X \times X \to X$ be a given mapping. If (1) is satisfied, then *F* is a generalized Meir–Keeler type function.

Proof. Suppose that (1) is satisfied. For all $\varepsilon > 0$, we check easily that (3) is satisfied with $\delta(\varepsilon) = (\frac{1}{k} - 1)\varepsilon$.

Download English Version:

https://daneshyari.com/en/article/841521

Download Persian Version:

https://daneshyari.com/article/841521

Daneshyari.com