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a b s t r a c t

In this study a new android app for smartphones to estimate chlorophyll content of a corn leaf is pre-
sented. Contact imaging was used for image acquisition from the corn leaves which captures the light
passing through the leaf directly by a smartphone’s camera. This approach would eliminate the needs
for background segmentation and other pre-processing tasks. To estimate SPAD (Soil Plant Analysis
Development) values, various features were extracted from each image. Then, superior features were
extracted by stepwise regression and sensitivity analysis. The selected features were finally used use
as inputs to the linear (regression) and neural network models. Performance of the models was evaluated
using the images taken from a corn field located in West of Ames, IA, USA, with Minolta SPAD 502
Chlorophyll Meter. The R2 and RMSE values for the linear model were 0.74 and 6.2. The corresponding
values for the neural network model were 0.82 and 5.10, respectively. Finally, these models were success-
fully implemented on an app named SmartSPAD on the smartphone. After installing the developed app
on the smartphone, the performance of the models were evaluated again using a new independent set
of data collected by SmartSPAD directly from maize plants inside a greenhouse. The SmartSPAD estima-
tion compared well with the corresponding SPAD meter values (R2 = 0.88 and 0.72, and RMSE = 4.03 and
5.96 for neural network and linear model, respectively). The developed app can be considered as a low
cost alternative for estimating the chlorophyll content especially when there is a demand for high
availability.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Determining the chlorophyll content of plants gives valuable
information relevant to plant health and crop management.
Chlorophyll is the main pigment in leaves and it is responsible
for leaf greenness. Leaf colour is an indicator of plant health and
also it can indicate plant nutrient status (Yadav et al., 2010;
Muñoz-Huerta et al., 2013). For example, there is significant corre-
lation between chlorophyll and nitrogen content of leaf tissues,
thus by measuring chlorophyll content, nitrogen status can be
assessed (Evans, 1989; Tewari et al., 2013). On the other hand,
excess nutrients like nitrogen in an agricultural environment is a
leading cause of water quality impairment (Turner and Rabalais,
1991). Therefore, managing and balancing agricultural nutrients

use has economic benefits in addition to reducing the risk of water
and environment pollution (Daughtry et al., 2000; Sawyer et al.,
2004). Destructive methods like Kjeldahl tissue analysis to deter-
mine nutrients status, in addition to their high costs, cannot be
used as a way for variable rate fertilising (i.e., real-time applica-
tion) because of time lag between collecting tissue sampling and
obtaining results (Piekielek et al., 1995; Muñoz-Huerta et al.,
2013). Chlorophyll meters (CMs) have been used by many
researchers as a non-destructive method to measure the chloro-
phyll content and estimate the nitrogen value of agricultural crops
(Richardson et al., 2002; Chang and Robison, 2003;
Murillo-Amador et al., 2004; Scharf et al., 2006; Uddling et al.,
2007; Miao et al., 2009). CMs use two wavebands to assess chloro-
phyll content, infrared light centred 930 nm and red light centred
650 nm (Blackmer et al., 1994).

In recent years, additional non-destructive techniques based on
spectral and hyperspectral reflectance have been investigated for
estimating the chlorophyll content of plants. These methods were
developed to achieve special purposes such as, real time and accu-
rate nutrients status reporting (Feng et al., 2008; Fitzgerald et al.,
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2010; Tian et al., 2011). Because chlorophyll content affects visual
features of leaves, using digital cameras or in other words RGB (red,
green, blue) imaging as a low cost instrument in the visible range
has also been used in nitrogen status estimation (Dutta Gupta
et al., 2013; Lee and Lee, 2013; Wang et al., 2013).

Standard cameras are significantly lower in cost than other
imaging systems and chlorophyll meters (Rorie et al., 2011a),
which cost about $1500US, but there are some challenges in using
them for this purpose; for example, different ambient lighting con-
ditions or shadows on leaves will affect the images. To overcome
these issues Tewari et al. (2013) used an experimental setup with
a cover and an artificial light to estimate nitrogen content of a rice
paddy crop. In addition, utilising independent indices extracted
from images can be useful in reducing the effect of variation in
light. Wang et al. (2013) used GMR (G–R), G/R, NGI (normalised
green index), NRI (normalised red index) and Hue indices for esti-
mating biomass, N content and leaf area index (LAI). They men-
tioned that in the GMR index, the colour of the plant canopy is
sharply different from the background and it is feasible to set a
threshold to segment rice plant from background. Moreover,
GMR and G/R indices had a better correlation than the other
indices to estimate biomass, N content and LAI. It seems that com-
binations of component values have better correlation with N con-
tent of plants. Karcher and Richardson (2003) found that the green
value in RGB colour space cannot exactly represent how green the
vegetation will appear, and that red and blue values also may
change the appearance of the green colour of turfgrass. They intro-
duce the dark green colour index (DGCI) based on HSB (hue, satu-
ration, and brightness) colour space, and after calibrating HSB
values, the DGCI showed a good correlation with N content.
Further studies also reported the capability of DGCI to estimate N
content of plants (Rorie et al., 2011a,b).

In order to use any of the above strategies or similar, computer
processing is required. With the advent of smartphones, the cam-
era and the processor exist in the same device, opening new oppor-
tunities for image capture and data generation. Gong et al. (2013)
developed and evaluated an app for android smartphones that can
estimate the citrus yield two weeks before harvest time. They use a
phone-implemented image processing technique for identifying
fruits in an image of a tree by segmenting and clustering.
Confalonieri et al. (2013) developed an app called PocketLAI, which
used smartphone images to estimate LAI, one of the principal
indices for assessing crop water requirements and photosynthetic
primary production. The authors note that their approach is an
inexpensive and highly portable alternative to commercially avail-
able LAI devices.

Recently, developments in smartphones especially in their pro-
cessors with built in sensors like cameras have brought us an
opportunity that in addition to using their sensors as measurement
tools, computation and analysis can be done on them without any
additional attachment. Yet to date, no standalone android apps for
measuring leaf chlorophyll content have been developed. In this
study we designed and implemented an app for android smart-
phones named SmartSPAD to estimate the SPAD value of corn
plants. In order to increase practicality and accuracy in real condi-
tions, a new method of imaging is introduced. Overall performance
of the app is compared with Minolta SPAD-502 chlorophyll meter.

2. Materials and methods

2.1. Data collection

The data were collected from maize (Zea mays) plots at the
Iowa State University Field Extension Education Laboratory,
Ames, IA (USA) during the 2014 growing season. Various levels of

nitrogen deficiency were induced by using different fertiliser treat-
ments: 0, 56, 112, 168, and 224 kg ha�1 (0, 50, 100, 150, 200,
pounds per acre). Each treatment was applied on two of the
55 m � 27 m plots since 2011, and N treatment was replicated in
6 rows. Both plots of each treatment were corn–corn rotation;
the east plot had no tillage and the west plot was ploughed by chi-
sel in falls of 2012 and 2013.

A set of validation data were collected from maize plants inside
a greenhouse located in Iowa State University (Agronomy
Department). These plants were fertilised by nitrogen at different
levels and leaf images with corresponding SPAD observations were
collected among them randomly.

2.2. Image acquisition and SPAD determination

To take images from the plant leaves, a LG E975 smartphone
with CCD sensor camera was used. To avoid or reduce effects of
ambient conditions on images, a new method of smartphone imag-
ing is presented which we refer to as contact imaging. In this
method, unlike standard picture-taking, leaves are held to the
camera lens of the smartphone and the camera captures the light
passing through the leaf (Fig. 1). Compared to standard image cap-
turing, this method of contact imaging has several advantages
including:

No interference from the background: One of the main steps in
using image processing techniques in leaf imaging is segment-
ing the background. A variety of methods exist for distinguish-
ing the target from the background, but the possibility of
misclassification always exists (Teimouri et al., 2014), and even
a small misclassification rate can affect the results. With contact
imaging, however, there is no need to remove the background,
and the entire image can be used as an input data.
No variation in the distance between leaf and sensor: Generally,
for robust use of cameras in either the lab or field, predefined
distances are assumed; to keep this distance between the target
and the sensor constant during image capture, frames or other
setups have been used. Contact imaging eliminates the need for
any other attachments.
No differences in image focus or blur: The nature of contact
images overcome this problem. Because in this method there
is no space between leaf and camera, there is essentially no dif-
ference between a focused image and an unfocused image.
Lower influence of different ambient conditions: Cloudy or
sunny lighting conditions, shadows, and wind conditions can
affect the success of using cameras in field conditions. Sun posi-
tion also affects the reflectance of vegetation indices of plants
(de Souza et al., 2010). But in contact imaging, only low lighting
condition has some influence on the resulting images; as
described below, we reduce this effect by adding luminance fac-
tor to the features used in computing the SPAD estimates. Other
field conditions like shadow, sun position, and wind, have no
effect on contact images.
An additional benefit of contact imaging is that the effects of
camera-to-camera variation are minimal. Because of the nature
of contact imaging and the image processing described below,
differences in sensor size or camera focusing algorithms will
not have an effect on the results of the contact image.

About 480 contact images in RGB colour space were captured by
the smartphone and were transferred to a desktop computer for
further analysis and model development. Images were intention-
ally taken from all plots under different light conditions (clear
and cloudy sky) and at different times of the day. During image
acquisition, field meteorological conditions including solar radia-
tion, air temperature and relative humidity were varied from 200
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