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a b s t r a c t

In this paper a class of polynomial interior-point algorithms for the Cartesian P∗(κ) second-
order cone linear complementarity problem based on a parametric kernel function, with
parameters p ∈ [0, 1] and q ≥ 1, are presented. The proposed parametric kernel function
is used both for determining the search directions and for measuring the distance
between the given iterate and the µ-center for the algorithms. Moreover, the currently
best known iteration bounds for the large- and small-update methods, namely, O((1 +
2κ)
√
N logN log N

ε
) and O((1 + 2κ)

√
N log N

ε
), are obtained, respectively, which reduce

the gap between the practical behavior of the algorithms and its theoretical performance
results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paperwe consider the second-order cone linear complementarity problem (SOCLCP),which seeks vectors x, s ∈ Rn
and q ∈ Rn such that

x ∈ K, s = A(x)+ q ∈ K, and 〈x, s〉 = 0,

where 〈x, s〉 = Tr(x ◦ s) denotes the Euclidean inner product, A : K → K is a linear transformation, andK ⊆ Rn is the
Cartesian product of several second-order cones, i.e.,

K = K1
×K2

× · · · ×KN ,

with

K j
=
{
(x1, x2:nj) ∈ R× Rnj−1 : x1 ≥ ‖x2:nj‖

}
,

for each j ∈ J = {1, 2, . . . ,N}, and n =
∑N
j=1 nj. It includes as a special case the well-known standard linear complemen-

tarity problem (SLCP), corresponding to nj = 1 for all j, i.e.,K is the nonnegative orthant Rn+, and the Karush–Kuhn–Tucker
(KKT) optimality conditions for second-order cone optimization (SOCO) [1–3] can be written in the form of SOCLCP [4,5].
Additionally, many important practical problems in economics and engineering, such as facility location and Nash equilib-
rium [6], can be formulated as it. Many researchers have also studied the second-order cone nonlinear complementarity
problem (SOCNCP) and achieved plentiful and beautiful results. For an overview of these results we refer to [7–11].
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We call SOCLCP the Cartesian P∗(κ)-SOCLCP if the linear transformationA has the Cartesian P∗(κ)-property, i.e., for any
nonnegative real number κ , the linear transformationA satisfies

(1+ 4κ)
∑
ν∈I+(x)

〈x(ν), [A(x)](ν)〉 +
∑
ν∈I−(x)

〈x(ν), [A(x)](ν)〉 ≥ 0, (1)

where

I+(x) = {ν ∈ J : 〈x(ν), [A(x)](ν)〉 > 0}, and I−(x) = {ν ∈ J : 〈x(ν), [A(x)](ν)〉 < 0}

are two index sets. The linear transformationA has the Cartesian P∗-property if it has the Cartesian P∗(κ)-property for some
nonnegative κ , i.e.,

P∗ =
⋃
κ≥0

P∗(κ).

We also recall that the linear transformation A has the Cartesian P0-property (respectively, P-property), if for any x ∈ K
and x 6= 0, there exists an index ν ∈ J such that x(ν) 6= 0 and 〈x(ν), [A(x)](ν)〉 ≥ 0 (respectively, 〈x(ν), [A(x)](ν)〉 > 0).
It is clear that the Cartesian P∗ class involves the Cartesian P class and turns out to be a special case in the Cartesian P0
class [11]. The concept of the Cartesian P∗(κ)-property was first introduced by Luo and Xiu [12] in the general Euclidean
Jordan algebra. Actually, it is a straightforward extension of the P∗(κ)-matrix introduced by Kojima et al. [13]. The related
to the Cartesian P0- and P-properties which were first introduced by Chen and Qi [14] for a linear transformation between
the space of symmetric matrices, and later extended by Pan and Chen [11] to the space of second-order cones. It should
be pointed out that the Cartesian P∗(κ)-property is a weaker property than the monotonicity unless κ = 0. Moreover, the
linear transformation A with the Cartesian P∗(κ)-property becomes the usual P∗(κ)matrix whenK is specified to be Rn

+
,

correspondingly, the Cartesian P∗(κ)-SOCLCP reduces to the P∗(κ)-LCP [13].
Until now all known polynomial interior-point methods (IPMs) used the so-called central path as a guideline to the

optimal set, and some variant of Newton’s method to follow the central path approximately. Kojima et al. [13] first proved
the existence of the central path for any P∗(κ)-LCP and unified the theory of the P∗(κ)-LCP from the viewpoint of IPMs.
Since then, many polynomial interior-point algorithms have been developed for solving the P∗(κ)-LCP (see, e.g., [15,16]).
However, there is still a gap between the practical behavior of these algorithms and these theoretical performance results
with respect to the update strategies of the duality gap parameter in the algorithms. The so-called large-update IPMs have
superior practical performance but with relatively weak theoretical results. While the so-called small-update IPMs enjoy
the best known worst-case iteration bounds, their performance in computational practice is poor. Recently, Peng et al. [17]
presented primal–dual IPMs based on the self-regular proximities for linear optimization (LO) and derived the currently best
known iteration bounds for the large- and small-updatemethods, namely,O

(√
n log n log n

ε

)
andO

(√
n log n

ε

)
, respectively,

which almost closes the gap between the iteration bounds for the large- and small-update methods. Bai et al. proposed a
class of primal–dual IPMs for LO [18] based on a variety of non-self-regular kernel functions (i.e., the so-called eligible kernel
functions) and obtained the same iteration bounds as in [17]. Later on, Amini and Peyghami [19], Bai et al. [20], Wang and
Bai [21], Cho [22], Cho and Kim [23], Cho et al. [24] extended primal–dual interior-point algorithms for LO to P∗(κ)-LCP
based on some eligible kernel functions, respectively.
Motivated by their work, in this paperwe propose a class of polynomial interior-point algorithms for the Cartesian P∗(κ)-

SOCLCP based on a parametric kernel function as defined by

ψ(t) =


tp+1 − 1
p+ 1

+
t1−q − 1
q− 1

, t > 0, p ∈ [0, 1], q > 1,

tp+1 − 1
p+ 1

− log t, t > 0, p ∈ [0, 1], q = 1,
(2)

where p and q are growth and barrier parameters, respectively. This kernel function was first introduced in [25] for LO,
which covers a wide range of kernel functions, including the classical logarithmic kernel function, the prototype self-regular
functions and also non-self-regular functions. The purpose of the paper is to deal with the Cartesian P∗(κ)-SOCLCP based on
the kernel function ψ(t) uniformly. We adopt the basic analysis used in [25] and revise them to be suited for the Cartesian
P∗(κ)-SOCLCP case.Wealso develop somenewanalytic tools that are used in the analysis of the algorithms. Finally,wederive
the currently best known iteration bounds for the large- and small-update methods, namely, O((1 + 2κ)

√
N logN log N

ε
)

and O((1+ 2κ)
√
N log N

ε
), respectively. Moreover, our analysis is simple and straightforward to the LO analogue.

The paper is organized as follows. In Section 2, we first recall some relevant algebraic properties of the second-order
cones. Then we discuss the central path and the new search directions for the Cartesian P∗(κ)-SOCLCP. The generic
polynomial interior-point algorithm for the Cartesian P∗(κ)-SOCLCP is also presented. In Section 3, we propose some
properties of the kernel functionψ(t) and the corresponding barrier functionΨ (v). In Section 4, we analyze the algorithms
and derive the currently best known iteration bounds for the large- and small-update methods. Finally, some conclusions
and remarks follow in Section 5.
We use the following national conventions. Rn,Rn

+
and Rn

++
denote the set of vectors with n components, the set of

nonnegative vectors and the set of positive vectors, respectively. ‖.‖ denotes the Frobenius norm for matrices, and the
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