Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/na)

Nonlinear Analysis

Pullback attractors for a non-autonomous generalized 2D parabolic system in an unbounded domain

Jong Yeoul Park, Sun Hye Park[∗](#page-0-0)

Department of Mathematics, Pusan National University, Busan 609-735, South Korea

ARTICLE INFO

Article history: Received 8 July 2010 Accepted 22 March 2011 Communicated by Ravi Agarwal

MSC: 60H15 35B40 35B41

Keywords: Generalized parabolic systems Navier–Stokes–Voight equation Pullback attractor Asymptotic compactness Unbounded domain

1. Introduction

In this paper, we study the dynamical behavior of a non-autonomous generalized 2D parabolic system in an unbounded domain. Let Ω_0 be a bounded open subset in R, $\Omega = \Omega_0 \times \mathbb{R}$ with boundary $\partial\Omega$. Consider a non-autonomous generalized 2D parabolic system

$$
-\Delta u_t + \alpha^2 \Delta^2 u_t + \nu \Delta^2 u + \nabla \cdot \overrightarrow{F}(u) + B(u, u) = g(x, t) \quad \text{in } \Omega \times [\tau, \infty),
$$

\n
$$
u = \nabla u = 0 \quad \text{on } \partial \Omega \times [\tau, \infty),
$$

\n
$$
u(x, \tau) = u_\tau(x) \quad \text{in } \Omega,
$$
\n(1.1)

where $u_t = \frac{\partial u}{\partial t}$, α , ν are positive constants, \overrightarrow{f} is a nonlinear vector function, *g* is an external forcing term with $g \in L^2_{loc}$ $(\mathbb{R}, L^2(\Omega))$ and $B(u, u) = \frac{\partial u}{\partial x_2} \frac{\partial \Delta u}{\partial x_1} - \frac{\partial u}{\partial x_1} \frac{\partial \Delta u}{\partial x_2}$. If $\overrightarrow{F} = 0$ in [\(1.1\),](#page-0-1) the system is 2D Navier–Stokes–Voight equation. Navier–Stokes-Voight equation was introduced by Oskolkov [\[1\]](#page--1-0) to describe a Kelvin–Voight viscoelastic incompressible fluid. Many authors have treated the autonomous Navier–Stokes–Voight equation in bounded domains [\[2](#page--1-1)[,3\]](#page--1-2) and in unbounded domains [\[4\]](#page--1-3) from various points of view. When the domain is unbounded, the Sobolev embedding is no longer compact. This gives a difficulty for proving the existence of a global attractor. For some PDEs, such difficulty can be overcome by the energy approach, which is introduced by Ball [\[5](#page--1-4)[,6\]](#page--1-5). Polat [\[7\]](#page--1-6) established the existence of a global attractor to the autonomous problem [\(1.1\),](#page-0-1) that is, when *g* is independent of time *t*, in the unbounded domain by using the technique

Corresponding author. *E-mail addresses:* jyepark@pusan.ac.kr (J.Y. Park), sh-park@pusan.ac.kr (S.H. Park).

a b s t r a c t

The existence of a pullback attractor is proven for a non-autonomous generalized 2D parabolic system in an unbounded domain. The asymptotic compactness of the solution operator is obtained by the uniform estimates on the tails of solutions.

© 2011 Elsevier Ltd. All rights reserved.

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter © 2011 Elsevier Ltd. All rights reserved. [doi:10.1016/j.na.2011.03.036](http://dx.doi.org/10.1016/j.na.2011.03.036)

Non-autonomous equations are also of great importance and interest as they appear in many applications in the natural science. The long-time behavior of solutions of such equations have been studied by many researchers [\[9–14\]](#page--1-8). Wang [\[13\]](#page--1-9) showed the existence of a pullback global attractor for the non-autonomous reaction–diffusion equations on the whole domain \mathbb{R}^n by using the uniform a priori estimates on the tails of solutions. Motivated by the ideas in [\[7,](#page--1-6)[13](#page--1-9)[,15\]](#page--1-10), we study the existence of the pullback attractor for the non-autonomous system [\(1.1\)](#page-0-1) on unbounded domains. The plan of this paper is as follows. In Section [2,](#page-1-0) we give some basic definitions and abstract results concerning the pullback attractor for nonautonomous dynamical systems. In Section [3,](#page-1-1) we derive uniform estimates of solutions by employing the techniques in [\[13,](#page--1-9)[15\]](#page--1-10). Finally, we prove the existence of a pullback attractor for the system (1.1) .

2. Preliminaries and abstract results

In this section, we give some basic definitions and abstract results concerning the pullback attractor for non-autonomous dynamical systems. These definitions and results can be found in [\[9](#page--1-8)[,16,](#page--1-11)[17,](#page--1-12)[13\]](#page--1-9) and references therein.

Definition 2.1. A family of mappings $\{\theta_t\}_{t\in\mathbb{R}}$ from *Q* to itself is called a family of shift operators on *Q*, if $\{\theta_t\}_{t\in\mathbb{R}}$ satisfies the following group properties:

(i) $\theta_0(q) = q$ for all $q \in Q$, (ii) $\theta_{t+\tau}(q) = \theta_t(\theta_\tau(q))$ for all $q \in Q$ and $t, \tau \in \mathbb{R}$.

Definition 2.2. Let $\{\theta_t\}_{t\in\mathbb{R}}$ be a family of shift operators on *Q*. Then a continuous θ -cocycle ϕ on *X* is a mapping ϕ : $\mathbb{R}^+ \times Q \times X \to X$ satisfying, for all $q \in Q$ and $t, \tau \in \mathbb{R}$,

- (i) $\phi(0, q, \cdot)$ is the identity on *X*;
- (ii) $\phi(t + \tau, q, \cdot) = \phi(t, \theta_{\tau}(q), \phi(\tau, q, \cdot));$
- (iii) $\phi(t, q, \cdot) : X \to X$ is continuous.

Suppose \mathcal{D} is a nonempty class of parameterized sets $D = {D(q)}_{q \in Q}$, $D(q) \subset X$ for every $q \in Q$.

Definition 2.3. It is said that $B = {B(q)}_{q \in Q} \in \mathcal{D}$ is pullback D-absorbing for ϕ in D if for every $q \in Q$ and $D \in \mathcal{D}$, there exists $T(q, D) > 0$ such that

 $\phi(t, \theta_{-t}(q), D(\theta_{-t}(q))) \subset B(q), \quad \forall t > T(q, D).$

Definition 2.4. The cocycle ϕ is said to be pullback \mathcal{D} -asymptotically compact in *X*, if for every $q \in Q$, $\{\phi(t_n, \theta_{-t_n}(q), x_n)\}$ has a convergent subsequence in *X* whenever $t_n \to +\infty$ and $x_n \in D(\theta_{-t_n}(q))$ with $\{D(q)\}_{q \in Q} \in \mathcal{D}$.

Definition 2.5. A family $C = \{C(q)\}_{q \in Q} \in \mathcal{D}$ is said to be pullback \mathcal{D} -attracting if

lim*t*→∞ dist(φ(*t*, θ[−]*t*(*q*), *D*(θ[−]*t*(*q*))), *C*(*q*)) = 0 for all *q* ∈ *Q*, *D* ∈ D,

where dist(*X*, *Y*) = $\sup_{x \in X} \inf_{y \in Y} d(x, y)$ is the Hausdorff semi-distance between *X* and *Y*.

Definition 2.6. It is said that *A* = { $A(q)$ }<sub> $q∈Q$ ∈ D is a pullback D-attractor if it satisfies

(1) $A(q)$ is compact in *X* for any $q \in Q$;

(2) *A* is pullback D-attracting;

(3) *A* is invariant, that is, $\phi(t, q, A(q)) = A(\theta_t(q))$ for all $(t, q) \in \mathbb{R}_+ \times Q$.

Theorem 2.1. Let ϕ be a continuous θ -cocycle on X and there exists a family of pullback \mathcal{D} -absorbing sets { $B(q)$ }_{$q \in Q$} ∈ \mathcal{D} . If ϕ *is a pullback* \mathcal{D} -asymptotically compact in X, then ϕ has a unique pullback \mathcal{D} -global attractor { $A(q)$ }_{$q \in \mathcal{D}$} defined by

$$
A(q) = \bigcap_{\tau \geq 0} \overline{\bigcup_{t \geq \tau} \phi(t, \theta_{-t}(q), B(\theta_{-t}(q)))}.
$$

3. Uniform estimates of solutions

Throughout this paper, we denote by $L^p(\Omega)$, $1 \leq p \leq \infty$, and $W^{m,p}(\Omega)$, $W_0^{m,p}(\Omega)$ the usual Lebesgue and Sobolev spaces, respectively. (\cdot, \cdot) denotes the inner product of $L^2(\Omega)$ and $\|\cdot\|$ the induced norm. For a Banach space X, $\|\cdot\|_X$

Download English Version:

<https://daneshyari.com/en/article/841578>

Download Persian Version:

<https://daneshyari.com/article/841578>

[Daneshyari.com](https://daneshyari.com)