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a b s t r a c t

Computing mountain passes is a standard way of finding critical points. We describe a
numerical method for finding critical points that is convergent in the nonsmooth case and
locally superlinearly convergent in the smooth finite dimensional case. We apply these
techniques to describe a strategy for addressing the Wilkinson problem of calculating the
distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate
critical points of mountain pass type to nonsmooth and metric critical point theory.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Computing mountain passes is an important problem in computational chemistry and in the study of nonlinear partial
differential equations. We begin with the following definition.

Definition 1.1. Let X be a topological space, and consider a, b ∈ X . For a function f : X → R, define a mountain pass
p∗

∈ Γ (a, b) to be a minimizer of the problem

inf
p∈Γ (a,b)

sup
0≤t≤1

f ◦ p(t).

Here, Γ (a, b) is the set of continuous paths p : [0, 1] → X such that p(0) = a and p(1) = b.

An important aim in computational chemistry is to find the lowest amount of energy to transition between two stable
states. If a and b represent two states and f maps the states to their potential energies, then the mountain pass problem
calculates this lowest energy. Early work on computing transition states includes that of Sinclair and Fletcher [1], and recent
work is reviewed by Henkelman et al. [2]. We refer the reader to this paper for further references in the computational
chemistry literature.

Perhaps more importantly, the mountain pass idea is also a useful tool in the analysis of nonlinear partial differential
equations. For a Banach space X , variational problems are problems (P) such that there exists a smooth functional J : X → R
whose critical points (pointswhere∇J = 0) are solutions of (P).Many partial differential equations are variational problems,
and critical points of J are ‘‘weak’’ solutions. In the landmark paper by Ambrosetti and Rabinowitz [3], the mountain pass
theorem gives a sufficient condition for the existence of critical points in infinite dimensional spaces. If an optimal path
for solving the mountain pass problem exists and the maximum along the path is greater than max(f (a), f (b)), then the
maximizer on the path is a critical point distinct from a and b. The mountain pass theorem and its variants provide the
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primary ways to establish the existence of critical points and to find critical points numerically. For more on the mountain
pass theorem and some of its generalizations, we refer the reader to [4].

In [5], Choi and McKenna proposed a numerical algorithm for the mountain pass problem by using an idea from [6] to
solve a semilinear partial differential equation. This is extended to finding solutions ofMorse index 2 (that is, the maximum
dimension of the subspace of X on which J ′′ is negative definite) in [7], and then to finding ones of higher Morse index by Li
and Zhou [8].

Li and Zhou [9], and Yao and Zhou [10] proved convergence results showing that their minimax method is sound for
obtaining weak solutions to nonlinear partial differential equations. Moré and Munson [11] proposed an ‘‘elastic string
method’’, and proved that the sequence of paths created by the elastic string method contains a limit point that is a critical
point.

The prevailing methods for numerically solving the mountain pass problem are motivated by finding a sequence of
paths (by discretization or otherwise) such that the maxima along these paths decrease to the optimal value. Indeed, many
methods in [2] approximate a mountain pass in this manner. As far as we are aware, only [12,13] deviate from this strategy.
We make use of a different approach by looking at the path connected components of the lower level sets of f instead.

One easily sees that l is a lower bound of the mountain pass problem if and only if a and b lie in two different path
connected components of lev≤l f . A strategy for finding an optimal mountain pass is to start with a lower bound l and keep
increasing l until the path connected components of lev≤l f containing a and b respectively coalesce at some point. However,
this strategy requires one to determine whether the points a and b lie in the same path connected component, which is not
easy. We turn to finding saddle points of mountain pass type, as defined below.

Definition 1.2. For a function f : X → R, a saddle point of mountain pass type x̄ ∈ X is a point such that there exists an open
set U such that x̄ lies in the closure of two path components of (lev<f (x̄) f ) ∩ U .

We shall refer to saddle points ofmountain pass type simply as saddle points. As an example, for the function f : R2
→ R

defined by f (x) = x21−x22, the point0 is a saddle point ofmountain pass type:we can chooseU = R2, a = (0, 1), b = (0, −1).
When f is C1, it is clear that saddle points are critical points. As we shall see later (in Propositions 6.1 and 6.2), saddle points
of mountain pass type can, under reasonable conditions, be characterized as maximal points on mountain passes, acting as
‘‘bottlenecks’’ between two components. In fact, if f is C2, the Hessians are nonsingular and several mild assumptions hold,
these bottlenecks are exactly critical points of Morse index 1. We refer the reader to the lecture notes of Ambrosetti [14].
Some of the methods in [2] actually find saddle points instead of solving the mountain pass problem.

We propose numerical methods for finding saddle points using the strategy suggested in Definition 1.2. We start with a
lower bound l and keep increasing l until the components of the level set lev≤l f ∩ U containing a and b coalesce, reaching
the objective of the mountain pass problem. The first method that we propose in Algorithm 2.1 is purely metric in nature.
One appealing property of thismethod is that calculations are now localized near the critical point andwe keep track of only
two points instead of an entire path. Our algorithm enjoys a monotonicity property: the distance between two components
decreases monotonically as the algorithm progresses, giving an indication of how close we are to the saddle point. In a
practical implementation, local optimality properties in terms of the gradients (or generalized gradients) can be helpful for
finding saddle points. Such optimality conditions are covered in Section 9.

It follows from the definitions that our algorithm, if it converges, converges to a saddle point. We then prove that any
saddle point is deformationally critical in the sense of metric critical point theory [15–17], and is Morse critical under
additional conditions. This implies in particular that any saddle point is Clarke critical in the sense of nonsmooth critical
point theory [18,19] based on nonsmooth analysis in the spirit of [20–23]. It seems that there are few existing numerical
methods for finding either critical points in ametric space or nonsmooth critical points. Currently, we are only aware of [24].

One of themain contributions of this paper is to give a secondmethod (in Section 3)which converges locally superlinearly
to a nondegenerate smooth critical point, i.e., critical points where the Hessian is nonsingular, in Rn. A potentially difficult
step in this second method is that where we have to find the closest point between two components of the level sets. While
the effort needed to perform this step accurately may be great, the purpose of this step is to make sure that the problem is
well aligned after this step. Moreover, this step need not be performed to optimality. In our numerical example in Section 8,
we were able to obtain favorable results without performing this step.

Our initial interest in the mountain pass problem came from computing the 2-norm distance of a matrix A to the closest
matrix with repeated eigenvalues. This is also known as the Wilkinson problem, and this value is the smallest 2-norm
perturbation that will make the eigenvalues of matrix A behave in a non-Lipschitz manner. Alam and Bora [25] showed
how the Wilkinson problem can be reduced to a global mountain pass problem. We do not solve the global mountain pass
problem associated with the Wilkinson problem, but we demonstrate that locally our algorithm converges quickly to a
smooth critical point of mountain pass type.

Outline: Section 2 illustrates a local algorithm for finding saddle points of mountain pass type, while Sections 3–5
are devoted to the statement, proof of convergence, and additional observations of a fast local algorithm for finding
nondegenerate critical points of Morse index 1 in Rn.

Section 6 discusses the relationship between mountain passes, saddle points, and critical points in the sense of metric
critical point theory and nonsmooth analysis, and does not depend on material in Sections 3–5.
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