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a b s t r a c t

A dynamical system is called complete if every solution of it exists for all t ∈ R. Let K
be the dimension of the vector space of quadratic systems. The set of complete quadratic
systems is shown to contain a vector subspace of dimension 2K/3. We provide two
proofs, one by the Gronwall lemma and the second by compactification that is capable
of showing incompleteness as well. Characterization of a vector subspace of complete
quadratic systems is provided. The celebrated Lorenz system for all real ranges of its
parameters is shown to belong to this subspace. We also provide a sufficient condition for
a system to be incomplete.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Among the polynomial systems, quadratic systems have attracted a great deal of attention owing to their important role
in mathematical sciences. These systems model diverse natural phenomena, from fluid mechanics to stars’ constellations
[1–17]. They share similar features with the competing species model and the Lotka–Volterra system; see e.g.,
[6,9–12,18,15,16]. About eight hundred papers on quadratic systems are mentioned in [19]. The Lorenz system has been
a celebrated quadratic system; see the original work of [13] and compare with [20–22]. It continues in recent years to be a
source for simulation and generalizations.

It would be beneficial to modeling if we would have criteria that will inform us which dynamical systems are complete
and which are not. It would be very helpful to know which systems possess global solutions for all parameters involved for
all time and for all initial values. This is so for more reasons than one. On the one hand, a systemwith solutions that blow up
in finite time could be indicative of a break-down of a model. On the other hand, modeling certain phenomena by families
of differential systems that are known in advance to possess solutions that exist for all time has an obvious advantage. It
goes without saying that criteria for systems that are not complete are of great importance as well.

The purpose of this study is to determine in a sense to be made precise, how large is the subspace of complete quadratic
systems and to some extent to characterize this subspace. To this end, we proceed with some preliminary definitions and
notations.

Let y be a column vector in Rk, and let yĎ = (y1, y2, . . . , yk) denote the row vector transpose of y. Let f (y) :=

(f (y)1, f (y)2, . . . , f (y)k)Ď be a vector field in Rk where each f (y)j is a real-valued polynomial function. We say that ẏ =
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dy
dt = f (y) is a polynomial system of degree L if the vector function f (y) is given by

f (y) = f0(y)+ f1(y)+ · · · + fL−1(y)+ fL(y), (1.1)

where each fi(y) = (fi(y)1, fi(y)2, . . . , fi(y)k)Ď is a column vector of homogeneous polynomials of degree i, for i =

0, 1, 2, . . . , L, and fL(y) ≠ 0 for some y ∈ Rk.

Definition 1. A system of differential equations ẏ = f (y) (or the associated vector field f (y)) is called complete if every
solution to the system exists for all t ∈ R.

By a ‘‘Lorenz system’’ we mean a system satisfying

ẏ1 = σ(y2 − y1)
ẏ2 = ρy1 − y2 − y1y3
ẏ3 = −βy3 + y1y2

(1.2)

for any real values of the parameters.
Let L = L(Rk) be the set of quadratic systems

ẏ = f2(y)+ f1(y)+ f0, with yĎf2(y) ≡ 0. (1.3)

We call the autonomous system (1.3) a Lorenz-like system, because it generalizes certain features of the classical Lorenz
system. It is easy to see that all Lorenz systems are in L(R3).

One of the previously unanswered questions in the literature is whether or not the Lorenz system is complete for all real
values of the parameters.1 We fill this gap and answer this question in the affirmative for the much larger family of systems,
to be named N AL. We have not found in the literature a proof of this global existence for the Lorenz system without
restricting the parameters (σ , ρ, β) to be positive, but our proof works for the much larger class. The earliest known proof
for the Lorenz system (1.2) is bymeans of a Lyapunov function, which is not readily available formost Lorenz-like systemsL.
We chose as a secondmethod of proof the compactification [24,25] that is able to answer not only questions of completeness
but is also able to address issues of incompleteness as well.

In Section 2, we prove that the dimension of the subspace of complete quadratic systems is 2/3 of the dimension of
the entire space of quadratic systems. We pinpoint a functional cause for completeness. In Section 3, we characterize
some incomplete systems and give a condition which guarantees incompleteness. Section 4 is dedicated to remarks and
comparisons with some of the related voluminous literature.

2. Completeness and structure of Lorenz-like systems

In this section we prove the main theorem that shows as a corollary that the Lorenz system is complete for all its real
parameters. This completeness property is shared by a larger family of non-autonomous quadratic systems that is denoted
below by N AL.

Definition 2. Let CB(R) be the family of scalar functions continuous and bounded on R. Let f2(t, y) be a column vector in
Rk whose components are quadratic forms: f2(t, y)n = (yĎf2n(t)y), with each f2n(t) a lower triangular matrix with entries
in CB(R). Let f1(t, y) = f1(t)y, where f1(t) is a k× kmatrix with entries in CB(R), and let f0 = f0(t) be a column vector in Rk

with entries in CB(R). Then N AL (Non-Autonomous Lorenz-like) is the class of systems

ẏ = f2(t, y)+ f1(t, y)+ f0(t), with yĎf2(t, y) = 0. (2.1)

The completeness of N AL is given in the theorem below. It also includes a more detailed description of the structure of
L that could explain the orthogonality property in (1.3) as a source of the completeness.

Let N be the linear space of all (at most) quadratic systems on Rk. The main result of our study is the following.

Theorem 3. (i) All systems in N AL are complete. (ii) dim(L) =
k
3 (k + 1)(k + 2) =

2
3 dim(N ) and for systems in L the

elements f ij2n of the lower triangular matrix f2n satisfy the following relations:

f nn2n = 0, for n = 1, 2, . . . , k, (2.2)

for j ≠ n, f nn2j + f jn2n + f nj2j = 0 (2.3)

for j < i < n, f ij2n + f nj2i + f ni2j = 0. (2.4)

Note that in the second equation, either the second or the third term is 0 because the matrix is triangular.

1 A proof that the Lorenz system with positive parameters is ‘‘complete in forward time’’ (that is, that all solutions exist for all time t > 0) can be found
in [21] using a Lyapunov function. A proof that it is ‘‘complete in backward time’’ (using the same Lyapunov function) due to Meisters [23] may also be
found in [20].



Download English Version:

https://daneshyari.com/en/article/841592

Download Persian Version:

https://daneshyari.com/article/841592

Daneshyari.com

https://daneshyari.com/en/article/841592
https://daneshyari.com/article/841592
https://daneshyari.com

